Setting up a Batch Least Squares Estimator 
Top Previous Next 
To begin configuring a Batch Least Squares estimation process in FreeFlyer, add a BatchLeastSquaresOD object to your Mission Plan using the Object Browser. After doubleclicking on the new object, you will see the "Estimation Model" page of its object editor. From this page, you can set initial options, such as the maximum allowable residual sigma, the solution epoch, and whether or not to constrain the data span to a specified start and end epoch.
Estimation Model Page for the Batch Least Squares OD Object Editor
You can also create and configure a BatchLeastSquaresOD object through FreeFlyer script. Some BatchLeastSquaresOD properties and methods are only accessible through FreeFlyer script. The AprioriCovarianceOption and MeasurementEditingOption properties are two examples.
The AprioriCovarianceOption property lets you choose one of four different approaches to handling the a priori covariance in the Batch Least Squares OD process:
The MeasurementEditingOption property lets you choose one of two different methods for performing measurement editing: use the predicted RMS to edit data, or use the standard deviation to edit data. Data is edited based on the MaxAllowableSigma property, depending on what the MeasurementEditingOption property is set to use. Using the predicted RMS to edit data tends to edit more data than when using the standard deviation, because it is more sensitive to a poor a priori state.
The syntax example below shows how to create a BatchLeastSquaresOD object and set its initial options.
Once this initial setup is complete, continue configuring your OD system by:
Solution EpochThe options for the solution epoch are:
When choosing the Solution Epoch, it is important to consider the time separation between the epoch of the Apriori State and the Solution Epoch. The greater the time difference, the greater the initial Covariance should be.
Epoch DetailsUse the Epoch Details editor to define the UserSpecified Epoch. See Parsing Dates and Times for more information on working with the Epoch Details editor.
Epoch Details Editor for the Batch Least Squares OD Object Editor
Solution DampingSolution damping is used in scenarios where Batch Least Squares solutions are prone to divergence (low observability, shortarc, etc.). Solution damping can ensure convergence, but for wellbehaved solutions, can actually slow convergence by requiring more iterations. Therefore solution damping is only recommended for cases prone to divergence. There are two solution damping options within FreeFlyer when performing Batch Least Squares estimation. By default solution damping is turned off.
Both solution damping methods use the SolutionDampingFactor, SolutionDampingRho, and SolutionDampingRhoTolerance in order to improve the convergence of the Batch Least Squares solution. Each solution damping method scales the Damping Factor based off of Rho and RhoTolerance but they scale the Damping Factor differently. A larger Damping Factor corresponds to more damping. See the equation below for how Rho is calculated based on the weighted RMS (chi), state (X), state update (xhat), Damping Factor (lambda), measurement matrix (H), weighting matrix (R), and measurements vector (y).
The LevenburgMarquardt damping method uses the SolutionDampingFactorDecrease, and SolutionDampingFactorIncrease properties to scale the SolutionDampingFactor based on the SolutionDampingRho and SolutionDampingRhoTolerance properties in order to improve the convergence of the Batch Least Squares solution. Rho is a quality factor to quantify the quality of the state update compared to the prestate update. A larger Rho corresponds to a higher quality state update. If Rho is large compared to RhoTolerance, the Damping Factor will be scaled down by a factor of FactorDecrease. If Rho is less than the RhoTolerance, the Damping Factor will be scaled up by a factor of FactorIncrease.
The Quadratic damping method is the more robust, but slower method of the two. It uses the SolutionDampingFactor and SolutionDampingAlpha properties based on the SolutionDampingRho and SolutionDampingRhoTolerance properties in order to improve the convergence of the Batch Least Squares solution. Similar to the LevenburgMarquardt method, the Quadratic damping method uses Rho depending on RhoTolerance to scale the Damping Factor or not. However, the amount the Damping Factor is scaled is determined by Alpha instead of the FactorDecrease and FactorIncrease properties. In the Quadratic damping method the Damping Factor is only scaled if Rho is below RhoTolerance. Below are the equations for calculating Alpha and how Alpha and Rho are used to scale the Damping Factor:
Step Size for State Transition Matrix AccumulationWhen performing Batch Least Squares estimation, all the observation data must be mapped from the observation epochs to the Solution Epoch; this is accomplished with the State Transition Matrix (STM). FreeFlyer allows the user to choose the Step Size that is used when accumulating the STM between observation epochs.
For each Spacecraft included in the Batch Least Squares estimation process, there are three options for how the STM is calculated. See Spacecraft OD Setup for more information.
See Also
