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ABSTRACT 

Thousands of objects orbiting in Low Earth Orbit (LEO) 

are catalogued and tracked by US Space Force (USSF) 

in a database of Two-Line Elements (TLEs) that is 

available online. A time series of TLE states for a 

particular object will show its orbital decay over time 

due to atmospheric drag. The decay data across multiple 

objects can form a training set to create a Machine 

Learning (ML) model for the atmospheric drag force. 

This paper investigates a demonstration of this process 

by training a ML atmosphere model with decay data 

from a historical object. Regression tests of the ML 

model against different propagation models are 

performed. The process to add force modeling context 

to the algorithm is described. 

 

1. INTRODUCTION 

 For objects orbiting in LEO (and in the absence of 

maneuvers), the atmospheric drag force is the dominant 

perturbation force that affects the trajectory over time. 

Thus, accurately modeling a time- and state-dependent 

atmosphere has been a high priority to enable high 

accuracy propagations and predictions of orbiting 

objects in LEO. Temporal changes in the atmosphere 

are largely driven by solar weather. In particular, it has 

been found that the atmosphere is sensitive to radio 

solar flux of 10.7 cm wavelength.[1] This radio 

frequency is observed and modeled and predictions are 

made from the models, which are published by various 

sources at various time resolutions and lengths. 

 
Figure 1. Comparison of observed vs predicted orbital decay 

of a vehicle over time. 

 

However, the effect of drag upon an orbiting vehicle is 

observable by the changes in orbital parameters of that 

vehicle over time. In Fig. 1, this process is notionally 

plotted, an initial state is observed to decay some 

amount, as compared to a prediction from the initial 

state which calculates a different orbital decay. The 

difference between the observed and predicted orbital 

states is due to atmospheric modeling errors and forms 

the basis for a stochastic update to the atmospheric 

model to improve its predictive value.  

 

Over each time span and across multiple missions, these 

errors can be organized to be the training data to a ML 

process that refines the atmospheric model 

stochastically to reduce prediction errors. In order to 

train such an ML process, a sufficiently sized training 

data set is necessary in the form of state histories of 

multiple LEO vehicles. 

 

The USSF tracks and reports on the states of many 

orbiting objects, which are available in databases hosted 

online by organizations such as space-track.org and 

celestrack.org. The state histories of orbiting objects are 

formatted as TLEs. This paper investigates the 

feasibility of the training process and analyzes the 

performance of the resulting model. The performance is 

analyzed through a regression test comparing predicted 

and recorded TLE states for historical missions. 

 

Prior work in the area of machine learning and 

atmospheric modeling include an analysis into a Long 

Short-Term Memory NN to forecast the 10.7 cm solar 

flux[2] and an analysis to estimate thermosphere density 

during quiet times and during geomagnetic storms using 

Gaussian processes and neural networks[3]. This work 

is inspired by and extends these analyses by utilizing 

training data of space vehicle states to model orbit 

decay from atmospheric drag.  

 

2. ATMOSPHERIC DRAG 

Objects in LEO are subject to a drag force by the upper 

reaches of the atmosphere. This drag force is 

nonconservative and reduces the total orbital energy of 

the object, which reduces its semi-major axis. The 

reduced semi-major axis causes the object to travel 



 

through higher atmospheric density which further 

increases the drag force. This causes an exponential 

orbital decay that eventually will cause the object to de-

orbit and re-enter the atmosphere. The object typically 

is incinerated by atmospheric friction heat.  

 

Atmospheric density as a function of altitude can 

approximately be modeled as  

 

𝜌(ℎ) ≈ 𝜌0𝑒
−
ℎ
𝐻0 

(1) 

 

Where 𝜌0 is the atmospheric density at sea level, and 

has a value of ~1.225 
kg

𝑚3 , and 𝐻0 is the height scale, 

which for Earth’s atmosphere has a value of 7.99 km.[4]  

 

This simplistic model ignores temperature variations in 

altitude, which cause deviations from this ideal 

exponential decay. The temperature variations are 

constantly changing and are largely driven by solar 

activity. Solar weather is thus a driver of atmospheric 

temperature and thus density, and as such is the subject 

of considerable observation, modeling, and predictions. 

 

Modern atmospheric models utilize a time series input 

of solar radio flux values (called F10.7 flux) to 

accurately model variations in the atmosphere from 

solar weather. Observations of F10.7 are published, as 

well as multiple models of predictions. There are short 

term predictions available from the National Oceanic 

and Atmospheric Agency (NOAA) which have hourly 

resolution and predict for 28 days, and there are long 

term predictions such as Schatten predictions, which 

have monthly resolution and predict forward for three 

solar cycles beyond the current cycle (~40 years).[5][6]  

 

Nominal solar weather is chaotic, poorly understood, 

and is complicated further by geomagnetic storms 

triggered by Coronal Mass Ejections (CMEs). The 

seemingly random nature of CMEs and resulting 

geomagnetic storms makes predictions through these 

time spans especially difficult. A geomagnetic storm 

can be indirectly observed by a notable spike in F10.7 

flux that deviates from the running average.  

 

A method to accurately observe, model, and predict 

F10.7 flux would have high value in improving the 

accuracy of LEO propagations and predictions. 

Improvements in prediction accuracy can improve 

performance of collision avoidance, remote sensing, and 

re-entry predictions. This paper investigates the use of 

TLE time series histories as training data to craft a ML 

atmospheric model. The next section describes TLEs 

and their use in the training process. 

 

3. TWO LINE ELEMENTS (TLEs) 

TLEs are a legacy data format for quickly and robustly 

transmitting vehicle state data. A single TLE is 140 

bytes of data arranged in two rows of 70 columns of 

characters. The end of each row contains a checksum to 

verify the validity of the transmitted data. A single TLE 

is displayed in Fig. 2, with each field highlighted and 

labeled. 

 

 
Figure 2. A single TLE with each field highlighted and 

labeled. 

The pertinent fields for this analysis are, in the same 

order as in Fig. 2: 

- Epoch Year & Julian Day Fraction 

- 1st derivative of Mean Motion 

- Inclination 

- Right Ascension of the Ascending Node 

- Argument of Perigee 

- Mean Anomaly 

- Mean Motion 

The 2nd derivative of Mean Motion is usually zero, and 

the drag term is used only within the SGP4 propagator 

that is designed for TLE use.[7] The object parameters 

are normalized and the time series orbit decay signal is 

used to craft a ML atmosphere model.  

 

The USSF tracks objects with a radar cross section of 10 

cm2 or larger, and the states of these objects are 

maintained in a publicly available database hosted 

online by space-track.org and celestrak.org. The 

database of LEO object states over time indirectly 

observes the atmosphere through the decaying orbital 

elements over any time span.  

 

TLE time series for multiple contemporaneous LEO 

objects can form the basis of training data that can be 

processed by ML algorithms to produce a stochastically 

trained model that “learns” from the training data. The 

next section describes Neural Networks (NNs) and the 

process of backpropagation. 

 

4. NEURAL NETWORKS (NNs) 

Neural Networks (NNs) are a mathematical model that 

roughly emulates the natural processes of neurons in the 

brains of animals. A diagram of a simplified NN is 

depicted below in Fig. 3.  



 

 
Figure 3. Diagram of a representative NN 

In the diagram of Fig. 3, there is an input layer of n 

neurons labeled the ith layer, a hidden layer of m 

neurons labeled the jth layer, and an output layer of p 

neurons labeled the kth layer. Each neuron takes as input 

the weighted activations from the previous layer, a bias, 

and processes the resulting value through a function. 

The weighted activation inputs to the neuron above 

takes the form 

 

𝑎0
𝑗
= ReLU(𝑎0

𝑖𝑊00
𝑖𝑗
+ 𝑎1

𝑖𝑊10
𝑖𝑗
+⋯+ 𝑎𝑛

𝑖𝑊𝑛0
𝑖𝑗
+ 𝑏0

𝑗
) (2) 

 

  Typically for modern NN applications, the activation 

function is a Rectified Linear Unit (ReLU) activation 

function that follows 

 

ReLU(𝑥) = max(0, 𝑥) (3) 

 

The ReLU function is different from the more classic 

Sigmoid function which has a maximum value of unity 

regardless of the input activation value. ReLU allows 

unbounded positive activation value which can improve 

its performance with regression problems.[8] 

 

The NN has two basic processing modes: forward 

propagation and backward propagation. Forward 

propagation can be interpreted as ‘executing’ the model, 

whereas backward propagation can be considered as 

‘training’ the model. Forward propagation is the 

processing of input data through the weighted 

activations across the NN to return the output layer 

values. 

 

Backward propagation (or simply backpropagation) 

combines the solution of a forward propagation with the 

expected or desired solution from that set of inputs, and 

adjusts the weighting coefficients W’s to minimize the 

error between the observed and expected output. 

Backpropagation requires a training data set with 

desired solutions paired with training input cases. 

Backpropagation attempts to minimize a cost function 

defined as 

 

𝐶(𝐲, 𝐨) =
1

𝑁
∑(𝑦𝑖 − 𝑜𝑖)

2

𝑁

𝑖=1

 (4) 

 

Where y is a vector of computed outputs, o is a vector 

of observed outputs, and N is the total number of 

training data points.  

 

Each execution of a backpropagation adjusts the 

weights of the NN to be more accurate when exposed to 

the training problem again. This adjustment is called 

Stochastic Gradient Descent, as each execution of 

backpropagation slightly adjusts the weights to be more 

accurate in the future to that input but can only consider 

the data it’s been trained with. Thus, the quality and 

organization of training data becomes a primary driver 

of NN model accuracy, and additional techniques exist 

to add context to the NN, so it is not entirely empirical 

in nature.  

 

Two methods for adding physical context to a NN 

model include Physics Influenced Neural Networks 

(PINN) and Discrepancy Modeling. PINNs add 

equations of motion to the cost function, which can 

incur a high cost to network solutions that are not 

physically feasible.[9] Discrepancy Modeling focuses 

the cost function on the difference between an analytic 

force model and observed outputs of a real system 

controlled with analytic equations of motion.[10] 

 

4.1. TRAINING, VALIDATION, TESTING 

As NN are entirely data-driven, their resulting 

capabilities are heavily influenced by training quality 

and quantity. Given a fixed set of training data, the 

process by which that data is processed in training can 

have an impact on the resulting performance. I.e. it is 

possible to increase system performance (or decrease) 

by adjusting the order and methods that training data is 

utilized in a training process. 

 

The largest driver of system performance is training 

quantity. On a basic level, more training typically 

results in better performance, with caveats. A central 

concern of training is overfitting to the training data. A 

system that is “overfit” to its training data will perform 

well on test data that is in-family with the training data, 

but that performance falls off quickly if exposed to 

novel inputs that are not in-family with training data. It 

is important then to have training data that spans the 

problem space in which the system is expected to 

perform.  

 

Given a set of training data, a common approach is to 

split the training data into three groups: training, 

validation, and testing. Occasionally the validation and 

testing groups are combined or referred to 

interchangeably. Of the three subsets of data, the 



 

training set is the largest and first used to train the 

system. The system’s performance cannot be directly 

evaluated by its performance on the training data, which 

would result in an unobserved bias and can lead to 

overfitting, so the performance of the system is 

evaluated on the validation set. It is at this point that the 

hyperparameters (e.g. number of hidden layers, number 

of neurons per layer) are tuned to increase performance.  

 

Once a system has been trained on the training set and 

adjusted through evaluation of the validation set, it is 

again trained on the training and validation set with the 

updated hyperparameters. Finally, a new “zero bias” 

evaluation is calculated by evaluating performance on 

the final Test set of training data. The performance of 

the model on the test data set is used for comparison and 

evaluation to external models.  

 

5. TLE TRAINING PROCESS 

The process to take TLE state inputs, organize ML 

training data from them, train a ML model, and perform 

regression testing is shown below in Fig. 4.  

 

 
Figure 4. ML Training and Testing Diagram. 

Considering a single object, a time history of TLE states 

is compiled, as shown in the top left of Fig. 4. The TLE 

states are preprocessed to create the training data. Each 

training datum contains a pair of TLEs from the same 

vehicle, separated in time (called the a priori state and 

the a posteriori state). The training data is then utilized 

by the ML Propagation model, which processes the 

inputs to produce a posteriori states. The error between 

the observed and computed a posteriori states drives the 

training of the ML model. 

 

After training and validation, the ML model is subjected 

to regression testing on objects in the validation and/or 

test set. Regression testing on the validation set allow 

for tuning the model, and regression testing on the test 

object is for final performance evaluation and 

comparison.  

 

The training data for this system is naturally broken into 

time series inputs from various objects. An intuitive 

method of crafting a training, validation, and test set of 

data is to name specific objects to populate each subset 

of training data. E.g. the time series histories of ten 

objects can be used to train the model, then validation 

can be evaluated on three different objects, and finally 

tested on an additional object. In this example the model 

is trained, validated, and tested on fourteen objects.  

 

5.1. DATA DRIVEN MODEL 

The prototype model utilized to explore this approach to 

orbital decay characterization is called the Data Driven 

Model (DDM). The DDM is able to “propagate” orbits 

forward in time completely separated from numerical 

integration and force modeling. 

 

The inputs and outputs of the prototype NN that models 

the decay of a LEO object’s orbit is displayed below in 

Fig. 5. 

 
Figure 5. Inputs and Outputs of Atmospheric NN 

The prototype NN takes five values as input and three 

values as output. The input values are: 

1. a0: initial semi-major axis 

2. e0: initial eccentricity 

3. i0: initial inclination 

4. t0: initial epoch 

5. tf: final epoch 

 

The inputs are normalized to be between 0 and 1. The 

three outputs are: 

1. af: initial semi-major axis 

2. ef: initial semi-major axis 

3. if: initial semi-major axis 

 

The output states are likewise normalized to be between 

0 and 1. The state vector has been reduced to defining 

the shape of the orbit but loses information about orbit 

placement: Right Ascension of the Ascending Node, 

Argument of Periapsis, and the True (or Mean) 

Anomaly. For this version, orbit shape is emphasized 

over explicit position of the vehicle over time. Reducing 

the state size in a neural network is called encoding and 

can accelerate processing and accuracy by reducing the 

number of correlations that need to be trained. 

 

This prototype NN accepts as input the shape of a LEO 

trajectory as defined by semi-major axis, eccentricity, 

and inclination. The semi-major axis and eccentricity 

are both expected to decrease as the time span increases, 

while the inclination is expected to remain the same. It 

remains as an output to a) enforce that inclination is 



 

invariant with time and b) establish sensitivity to objects 

with varying inclination. The motivation is that the 

atmosphere is an oblate spheroid, which would have 

low-inclination objects encounter higher densities than 

high-inclination objects. 

 

5.2. TRAINING DATA ORGANIZATION 

From a trove of TLE state vectors across multiple 

objects and timespans, it is necessary to properly 

collect, organize, and format the state vectors and labels 

to train the NN. Considering a single object to train 

with, a time series history of state vectors in TLE format 

are collected. For this analysis, focus is given to the first 

quarter of 2020. TLEs from multiple objects that span 

the first three months of 2020 are downloaded from 

online databases. 

 

Given a time series of TLE states from a single object in 

LEO, a training pair can be made from any two TLE 

states separated by positive time. A chart depicting valid 

TLE pairs (in blue) for training data input is shown 

below in Fig. 6. 

 
Figure 6. Valid TLE pairs for training data highlighted in 

blue. 

s shown in Fig. 6, each TLE can be paired with 

any/every TLE that has a higher epoch. The first TLE 

can be paired with every subsequent TLE while the  

N-1th TLE can only be paired with the Nth TLE. The 

maximum number of training pairs from N TLEs of the 

same object in time is thus 

 

max(𝑁𝑡𝑟𝑎𝑖𝑛) =
1

2
(𝑁𝑇𝐿𝐸 − 1)2 (5) 

 

E.g., given 101 TLEs from a single object, a maximum 

of 5000 training pairs can be collected. To increase 

training speed and adjust the time distribution of 

training pairs, this maximum set of training pairs is 

reduced by a thinning coefficient to randomly utilize a 

subset of possible combinations. This thinning 

coefficient can be a tuning factor to simultaneously 

reduce computation time and improve distribution of 

training pairs. 

 

The model is affected by the order of the training data 

processed by the model. It is possible to encounter 

“training saturation”, a flavor of early-onset overfitting, 

by poorly ordering the training data so that the model 

becomes overfit to a subset of data before training has 

completed. It is important then to properly randomize 

the input data order to be robust against this 

phenomenon. For this application this means 

randomizing both training pairs in time and across 

training objects.  

 

5.3. INITIAL TRAINING OBJECTS 

For the initial training of the data-driven system, a 

subset of objects from the vast database of tracked 

objects needs to be designed. If each TLE is considered 

a noisy observation of the atmosphere, intuition would 

guide that a robust training set would span a range of 

orbital geometries to “observe” the atmosphere with 

geometric diversity. 

 

To have predictive value within orbital geometries of 

interest, the model must be trained on objects that 

inhabit those orbital geometries. The altitude range of 

300-1000 km is considered for this exercise. The set of 

objects to train from is thus limited to this altitude 

range. Additionally, it is desirable to have objects with 

diversity of orbital inclination to capture asymmetric 

properties of the atmosphere. Finally, it is important to 

capture objects that are not maneuvering, or to disallow 

training pairs across a maneuver. By only selecting 

rocket body objects, the chance of a maneuver within 

the training time span is eliminated. Additionally, rocket 

bodies have large radar cross sections which improve 

their tracking characteristics and sensitivity to 

atmospheric drag. 

 

Below in Fig. 7 is a list of candidate objects which are 

utilized in a training exercise again focusing on the 

timespan of the first quarter of 2020.  

 



 

 
Figure 7. Training objects Inclination and Altitude range. 

Validation objects are highlighted in green, and test object 

highlighted in red. 

These candidate objects are all rocket bodies and do not 

contain maneuvers over the training timespan of the first 

quarter of 2020. Note the variation in inclination and 

heights of apogee and perigee, respectively. With proper 

training, the resulting model should have predictive 

value for any object whose orbit occupies the space 

spanned by the training objects.  

 

6. MODEL TRAINING 

A common approach to training a model has three steps 

mentioned previously: training, validation, and testing. 

The first step of training is called “training” because it 

constitutes the bulk of backpropagation calculations. In 

this exercise, the majority of the training objects are 

used in the training step. Their TLEs over a common 

time span are collected, and training pairs of starting-

ending states are generated. Similarly, a subset of 

objects is used for validation and testing, and training 

pairs are generated from their respective TLE states.  

 

From the ten test objects over the time span of the first 

quarter of 2020, there are 149,228 training pairs. The 

inputs from the testing objects are randomized before 

processing through the backpropagation routine. The 

inputs are grouped into batches that are processed 

sequentially to generate stochastic gradient steps that 

update the system parameters. The training is 

“complete” when all batches have been backpropagated 

through the system.  

 

As shown in Fig. 7, the three objects whose names are 

boxed in green are dedicated for the validation set, 

while the one object boxed in red is dedicated to be the 

test set. Backpropagation is performed on the training 

set, and then evaluated on the validation set. The 

evaluation of the validation set allows the model to be 

tuned on the training data without overfitting to that 

specific training data.  

 

With the training and validation sets, a sensitivity 

analysis is run on the hyperparameters (i.e. number of 

layers and neurons per layer) to ascertain the optimal 

architecture for this application. Special care must be 

taken to organize the initial weights and training data 

order to return consistent solutions from the same set of 

training data. Below in Fig. 7 is a correlogram depicting 

the performance of each model architecture on the same 

training data and validation data. Each model is 

represented with a colored circle whose color 

corresponds to the mean error, and the radius 

corresponds to the variance of error. Not captured in this 

analysis is the training speed and number of calculations 

for each model. There is a positive correlation between 

training clock time and number of trainable parameters 

(weights between successive neurons), so larger systems 

with more layers and neurons per layer take longer to 

train. This will have more of an impact on larger 

training data sets.  

 

The results from Fig. 8 suggest a model in the interior of 

the plot could be expected to be more reliable than 

models at the extremes of hyperparameter range. The 

results also suggest that the training is still in a data-

poor regime, as the ordering of training data and initial 

weights of the model have a strong influence on the 

resulting performance. This is a symptom of the 

limitations to manually collecting training data, for 

which automation could alleviate by significantly 

expanding the training set. From these results, an 

architecture of 4 layers of 64 neurons each (circled 

below in Fig. 8) will be utilized for the remaining tests. 

This analysis shall be repeated as the training and 

validation data sets grow. 

 

 
Figure 8. Correlogram depicting the error of each model in a 

color scale with the variance of error as the radius of the data 

points. Chosen architecture is circled in green. 

7. MODEL TESTING 

With the chosen architecture, the model is then trained 

on the training set and tested more deeply on the test 

vehicle CZ2C. To further stress the model and explore 

its predictive performance beyond the training data time 



 

span, the test object’s valid time span is extended from 

the first quarter of 2020 to the first six months of 2020. 

Below in Fig. 9 is a histogram of SMA error on the 

extended time span test object. 

 
Figure 9. Histogram of SMA error on the extended time span 

test object after training. 

The SMA errors roughly follow a gaussian curve 

centered at 0.5 km, showing a slight positive bias. 

Below in Fig. 10 is a histogram of eccentricity error on 

the extended time span object after training. 

 

 
Figure 10. Histogram of Eccentricity error on the extended 

timespan test object after training. 

The eccentricity errors carry a slight positive bias and 

resembles a rough gaussian curve with slight positive 

skew. Finally, the histogram of inclination error on the 

extended time span object after training is below in Fig. 

11.  

 
Figure 11. Histogram of Inclination error on the extended 

timespan test object after training. 

While the test object offers a unique set of orbital 

parameter inputs for the model and test pairs that are 

beyond the training time span of the model, the model 

shows good performance in predicting orbital 

parameters. 

 

To capture the performance across a wider range of 

orbital parameters, the evaluation is repeated on the 

training objects, but limiting the evaluation to the three 

months after the training time span. I.e., the model is 

trained on ten objects in the first quarter of 2020 and 

then tested on the same objects in the second quarter of 

2020.  

 

Below in Fig. 12 is a histogram of SMA error on the 

training objects in the 2nd quarter of 2020. 

 
Figure 12. Histogram of SMA error on the training objects 

within the 2nd quarter of 2020. 

There seem to be two distinct trends from likely 

different objects within the test set. There is a strong 

gaussian curve centered between -1 and 0 km error, with 

a “fat tail” that lingers above 3km of error. Below in 

Fig. 13 is a histogram of eccentricity error on the 

training objects in the 2nd quarter of 2020. 

 



 

 
Figure 13. Histogram of Eccentricity Error on the training 

objects within the 2nd quarter of 2020. 

The eccentricity errors on the 2nd quarter objects show a 

rough gaussian curve with a distinct plateau around 

0.001. Finally, a histogram of inclination errors on the 

training objects in the 2nd quarter of 2020 is shown 

below in Fig. 14. 

 

These tests show that the model has value in 

propagating a subset of orbital elements in time with a 

bounded set of errors. When the model is tested on a 

time span beyond when it is trained it performs with 

similar accuracy. The next section compares the data 

driven model to the numerical integration of an 

astrodynamics propagation engine. 

 

 
Figure 14. Histogram of inclination error on the training 

objects within the 2nd quarter of 2020. 

 

8. TESTING VS NUMERICAL INTEGRATION 

To investigate the performance capability of the NN 

approach more fully, it must be placed in context 

against numerical integration methods more commonly 

used to predict the future state of vehicles in LEO. The 

model is evaluated against the astrodynamics propagator 

in FreeFlyer, which will propagate TLE states forward 

in time using numerical integration through a complex 

gravity and atmospheric model. 

 

The most complex numerical integration is called the 

FreeFlyer (FF) numerical model and is a numerical 

integration with spherical harmonics gravity model and 

analytic atmospheric model. Specifically, the FF 

numerical model uses an Earth gravity model with 4 

zonals and 4 tesserals. It also includes gravity from the 

Sun and Moon and utilized an 8th order Runge-Kutta 

numerical integrator with 9th order error threshold 

checking. The analytic atmospheric model in the FF 

numerical model is  

 

𝜌(ℎ) = 𝜌0(1 + 𝜌1)𝑒
𝑆𝑒𝑓𝑓ℎ (6) 

 

Where 𝑆𝑒𝑓𝑓  is the effective scale height that is 

interpolated from a table to account for temperature 

variations, and 𝜌1 is a correction term that is zero by 

default.  

 

Within FreeFlyer are also a Keplerian (Two-Body) and 

SGP4 propagator. The Keplerian propagator assumes a 

point mass Earth with no atmosphere, and the SGP-4 

propagator is a Simplified Perturbation model that is 

specific to the propagation of TLE data. 

 

A notable difference operationally between the two 

models is the computer clock time required to execute 

either the data driven or FF model. To illustrate, the FF 

models are evaluated on the test object over the first 180 

days of 2020. Below in Fig. 15 is a plot of execution 

time for different models vs propagation time. Included 

are the DD model, the full force model numerical 

integrator, the SGP-4 integrator, and the Keplerian 

(Two-Body) model. 

 

 
Figure 15. Clock time to execute model predictions between 

FF and data driven models. 

It is clear from Fig. 15 that the data driven model 

execution is insensitive to propagation time span. An 

80-day propagation takes the same amount of clock time 



 

as a 10-day propagation. This is not true for the FF 

numerical model, which takes longer clock time to 

execute propagations of longer time spans. Both the 

Keplerian and SGP-4 integrators are considerably faster 

than the FF numerical model, but the DD model is still 

slightly faster in execution time.  This capability can be 

important for highly parallelized applications that could 

benefit from rapid calculations of propagations. 

 

While the data driven model can be executed on any 

propagation time with the same execution time, its 

accuracy is less than that of the FreeFlyer model. To 

illustrate, the errors from each model are extracted from 

a test against the extended timespan test object. Below 

in Fig. 16, the SMA errors from each model are plotted 

as a function of propagation time. 

 

 
Figure 16. SMA error vs Propagation time for each model. 

Each model shows unique behavior: the Two-Body 

model has the highest errors, and the Data-Driven 

model shows a negative trend. The SGP-4 propagator 

shows the smallest SMA errors over any time span. 

Below in Fig. 17 are the eccentricity errors from each 

model plotted as a function of time. 

 

 
Figure 17. Eccentricity Error vs propagation time for each 

model. 

For eccentricity, the Data-Driven model is in-family 

with the Two-Body model and has slightly lower errors. 

The Numerical and SGP-4 integrators have nearly 

identical performance and behavior. Finally, the 

inclination errors from each model as a function of time 

are shown below in Fig. 18. 

 
Figure 18. Inclination error vs propagation time for each 

model. 

Similarly, the Data-Driven and Two-Body models are 

in-family and show similar behavior while the SGP-4 

and Numerical integrators both show smaller errors and 

similar behavior. To summarize the performance 

comparisons over 6790 TLE pairs, the aggregate 

statistics of the errors of each model are shown below in 

Table 1. 

 
Table 1. Propagation error statistics from each model over 

6790 test TLE pairs. 
  Data Driven Numerical SGP4 Two-Body 

SMA 

error 

(km) 

mean -3.281E-01 3.750E-02 1.451E-04 3.155E+00 

1-σ 3.611E-01 1.239E-01 1.102E-02 2.190E+00 

Ecc. 

Error 

mean 4.530E-04 -2.993E-08 -3.857E-06 5.534E-06 

1-σ 6.297E-04 7.787E-05 7.203E-05 1.011E-03 

Inc. 

Error 

(deg) 

mean -6.850E-02 -4.261E-05 -1.532E-04 3.632E-02 

1-σ 1.105E-01 8.092E-04 1.304E-03 1.101E-01 

Execution time 

(sec) 

0.40 15066.33 1221.96 896.46 

 

Some caveats are worth considering. The FF models all 

propagate a full set of state parameters while the DD 

model encodes the state information to only “orbit 

shape” as defined by SMA, eccentricity, and inclination. 

The DD model could benefit from additional training on 

more objects, which would be enabled with automated 

TLE querying. Regardless, the stark calculation speed 

difference is notable, three orders of magnitude faster 

than the next quickest method (Keplerian). 

 

9. DISCREPANCY MODELING 

The model described thus far in this paper are fully 

empirical or data-driven models. No equations of 

motion are utilized, and no insight into the machinations 



 

of the model is available beyond the matrix of weights 

within the system itself. While the data driven model 

has shown predictive value when properly orchestrated 

and trained, it lacks the intuition of an analytical force 

model and by itself not as accurate as numerical 

integration. 

 

A method to enhance numerical integration with force 

modeling from first principles is to reformulate the 

problem to isolate the scope of the NN to model the 

discrepancy between numerical integration and True 

states. Currently the data-driven model acts as an 

incomplete replacement to numerical integration, and 

the predictive value of propagating orbit “shape” as it 

decays in Earth’s atmosphere has been established. By 

refactoring to discrepancy modeling it may be possible 

to enhance prediction accuracy beyond current 

capabilities with numerical integration.[10] 

 

10. CONCLUSIONS / FORWARD WORK 

A neural network approach to predicting the “shape” of 

a Low Earth Orbit (excluding specific true or mean 

anomaly) over time due to orbital decay from 

atmospheric drag is described. By leveraging the large 

set of TLE data available online, it is proposed that such 

a system could be trained on TLEs from across multiple 

vehicles over a common time span. The process to 

develop a neural network and organize its training data 

for this task is described. 

 

The analyses performed show that a neural network has 

value in propagating orbital states forward in time. A 

sensitivity analysis was performed on the validation 

data to optimize the network hyperparameters. The 

neural network is then trained on the training data to 

produce a data driven model. That model is tested to 

ascertain its performance in accuracy and speed. These 

analyses are also performed on a numerical 

astrodynamics propagator as a comparison against a 

typical spacecraft propagation. The astrodynamics 

propagator in FreeFlyer with default settings is utilized 

as the benchmark. 

 

The data driven model is tested on the test object and 

against multiple propagators available in FreeFlyer, 

namely the Keplerian model, the SGP4 propagator for 

TLEs, and a full force model numerical integration. The 

data driven model’s execution speed is invariant to 

propagation time and is faster than any of the FreeFlyer 

propagation models. The data driven model returned 

comparable error performance to the Keplerian model, 

but with larger errors than the SGP4 and numerical 

model. 

 

The next steps are to greatly increase the size of the 

training data through automation, incorporate 

discrepancy modeling, and develop a system that is 

continually trained on new publications of TLEs. 

Furthermore, analyses on possible applications of this 

system shall be investigated, such as collision avoidance 

analysis, orbital decay prediction, maneuver detection, 

and onboard computing. 
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