
Machine Learned Atmospheric Force Model
Trained with Two Line Elements

Written by: Clark P. Newman, Fabio Chiappina, Christina Reid

®

MACHINE LEARNED ATMOSPHERIC FORCE MODEL TRAINED WITH TWO LINE

ELEMENTS

Clark P. Newman(1), Fabio Chiappina(2), Christina Reid(3)

(1)a.i. solutions, Inc., 4500 Forbes Blvd, Suite 300. Lanham, MD, USA, Email: clark.newman@ai-solutions.com
(2)a.i. solutions, Inc., 4500 Forbes Blvd, Suite 300. Lanham, MD, USA, Email: fabio.chiappina@ai-solutions.com

(3)a.i. solutions, Inc., 4500 Forbes Blvd, Suite 300. Lanham, MD, USA, Email: christina.reid@ai-solutions.com

ABSTRACT

Thousands of objects orbiting in Low Earth Orbit (LEO)

are catalogued and tracked by US Space Force (USSF)

in a database of Two-Line Elements (TLEs) that is

available online. A time series of TLE states for a

particular object will show its orbital decay over time

due to atmospheric drag. The decay data across multiple

objects can form a training set to create a Machine

Learning (ML) model for the atmospheric drag force.

This paper investigates a demonstration of this process

by training a ML atmosphere model with decay data

from a historical object. Regression tests of the ML

model against different propagation models are

performed. The process to add force modeling context

to the algorithm is described.

1. INTRODUCTION

 For objects orbiting in LEO (and in the absence of

maneuvers), the atmospheric drag force is the dominant

perturbation force that affects the trajectory over time.

Thus, accurately modeling a time- and state-dependent

atmosphere has been a high priority to enable high

accuracy propagations and predictions of orbiting

objects in LEO. Temporal changes in the atmosphere

are largely driven by solar weather. In particular, it has

been found that the atmosphere is sensitive to radio

solar flux of 10.7 cm wavelength.[1] This radio

frequency is observed and modeled and predictions are

made from the models, which are published by various

sources at various time resolutions and lengths.

Figure 1. Comparison of observed vs predicted orbital decay

of a vehicle over time.

However, the effect of drag upon an orbiting vehicle is

observable by the changes in orbital parameters of that

vehicle over time. In Fig. 1, this process is notionally

plotted, an initial state is observed to decay some

amount, as compared to a prediction from the initial

state which calculates a different orbital decay. The

difference between the observed and predicted orbital

states is due to atmospheric modeling errors and forms

the basis for a stochastic update to the atmospheric

model to improve its predictive value.

Over each time span and across multiple missions, these

errors can be organized to be the training data to a ML

process that refines the atmospheric model

stochastically to reduce prediction errors. In order to

train such an ML process, a sufficiently sized training

data set is necessary in the form of state histories of

multiple LEO vehicles.

The USSF tracks and reports on the states of many

orbiting objects, which are available in databases hosted

online by organizations such as space-track.org and

celestrack.org. The state histories of orbiting objects are

formatted as TLEs. This paper investigates the

feasibility of the training process and analyzes the

performance of the resulting model. The performance is

analyzed through a regression test comparing predicted

and recorded TLE states for historical missions.

Prior work in the area of machine learning and

atmospheric modeling include an analysis into a Long

Short-Term Memory NN to forecast the 10.7 cm solar

flux[2] and an analysis to estimate thermosphere density

during quiet times and during geomagnetic storms using

Gaussian processes and neural networks[3]. This work

is inspired by and extends these analyses by utilizing

training data of space vehicle states to model orbit

decay from atmospheric drag.

2. ATMOSPHERIC DRAG

Objects in LEO are subject to a drag force by the upper

reaches of the atmosphere. This drag force is

nonconservative and reduces the total orbital energy of

the object, which reduces its semi-major axis. The

reduced semi-major axis causes the object to travel

through higher atmospheric density which further

increases the drag force. This causes an exponential

orbital decay that eventually will cause the object to de-

orbit and re-enter the atmosphere. The object typically

is incinerated by atmospheric friction heat.

Atmospheric density as a function of altitude can

approximately be modeled as

𝜌(ℎ) ≈ 𝜌0𝑒
−
ℎ
𝐻0

(1)

Where 𝜌0 is the atmospheric density at sea level, and

has a value of ~1.225
kg

𝑚3 , and 𝐻0 is the height scale,

which for Earth’s atmosphere has a value of 7.99 km.[4]

This simplistic model ignores temperature variations in

altitude, which cause deviations from this ideal

exponential decay. The temperature variations are

constantly changing and are largely driven by solar

activity. Solar weather is thus a driver of atmospheric

temperature and thus density, and as such is the subject

of considerable observation, modeling, and predictions.

Modern atmospheric models utilize a time series input

of solar radio flux values (called F10.7 flux) to

accurately model variations in the atmosphere from

solar weather. Observations of F10.7 are published, as

well as multiple models of predictions. There are short

term predictions available from the National Oceanic

and Atmospheric Agency (NOAA) which have hourly

resolution and predict for 28 days, and there are long

term predictions such as Schatten predictions, which

have monthly resolution and predict forward for three

solar cycles beyond the current cycle (~40 years).[5][6]

Nominal solar weather is chaotic, poorly understood,

and is complicated further by geomagnetic storms

triggered by Coronal Mass Ejections (CMEs). The

seemingly random nature of CMEs and resulting

geomagnetic storms makes predictions through these

time spans especially difficult. A geomagnetic storm

can be indirectly observed by a notable spike in F10.7

flux that deviates from the running average.

A method to accurately observe, model, and predict

F10.7 flux would have high value in improving the

accuracy of LEO propagations and predictions.

Improvements in prediction accuracy can improve

performance of collision avoidance, remote sensing, and

re-entry predictions. This paper investigates the use of

TLE time series histories as training data to craft a ML

atmospheric model. The next section describes TLEs

and their use in the training process.

3. TWO LINE ELEMENTS (TLEs)

TLEs are a legacy data format for quickly and robustly

transmitting vehicle state data. A single TLE is 140

bytes of data arranged in two rows of 70 columns of

characters. The end of each row contains a checksum to

verify the validity of the transmitted data. A single TLE

is displayed in Fig. 2, with each field highlighted and

labeled.

Figure 2. A single TLE with each field highlighted and

labeled.

The pertinent fields for this analysis are, in the same

order as in Fig. 2:

- Epoch Year & Julian Day Fraction

- 1st derivative of Mean Motion

- Inclination

- Right Ascension of the Ascending Node

- Argument of Perigee

- Mean Anomaly

- Mean Motion

The 2nd derivative of Mean Motion is usually zero, and

the drag term is used only within the SGP4 propagator

that is designed for TLE use.[7] The object parameters

are normalized and the time series orbit decay signal is

used to craft a ML atmosphere model.

The USSF tracks objects with a radar cross section of 10

cm2 or larger, and the states of these objects are

maintained in a publicly available database hosted

online by space-track.org and celestrak.org. The

database of LEO object states over time indirectly

observes the atmosphere through the decaying orbital

elements over any time span.

TLE time series for multiple contemporaneous LEO

objects can form the basis of training data that can be

processed by ML algorithms to produce a stochastically

trained model that “learns” from the training data. The

next section describes Neural Networks (NNs) and the

process of backpropagation.

4. NEURAL NETWORKS (NNs)

Neural Networks (NNs) are a mathematical model that

roughly emulates the natural processes of neurons in the

brains of animals. A diagram of a simplified NN is

depicted below in Fig. 3.

Figure 3. Diagram of a representative NN

In the diagram of Fig. 3, there is an input layer of n

neurons labeled the ith layer, a hidden layer of m

neurons labeled the jth layer, and an output layer of p

neurons labeled the kth layer. Each neuron takes as input

the weighted activations from the previous layer, a bias,

and processes the resulting value through a function.

The weighted activation inputs to the neuron above

takes the form

𝑎0
𝑗
= ReLU(𝑎0

𝑖𝑊00
𝑖𝑗
+ 𝑎1

𝑖𝑊10
𝑖𝑗
+⋯+ 𝑎𝑛

𝑖𝑊𝑛0
𝑖𝑗
+ 𝑏0

𝑗
) (2)

 Typically for modern NN applications, the activation

function is a Rectified Linear Unit (ReLU) activation

function that follows

ReLU(𝑥) = max(0, 𝑥) (3)

The ReLU function is different from the more classic

Sigmoid function which has a maximum value of unity

regardless of the input activation value. ReLU allows

unbounded positive activation value which can improve

its performance with regression problems.[8]

The NN has two basic processing modes: forward

propagation and backward propagation. Forward

propagation can be interpreted as ‘executing’ the model,

whereas backward propagation can be considered as

‘training’ the model. Forward propagation is the

processing of input data through the weighted

activations across the NN to return the output layer

values.

Backward propagation (or simply backpropagation)

combines the solution of a forward propagation with the

expected or desired solution from that set of inputs, and

adjusts the weighting coefficients W’s to minimize the

error between the observed and expected output.

Backpropagation requires a training data set with

desired solutions paired with training input cases.

Backpropagation attempts to minimize a cost function

defined as

𝐶(𝐲, 𝐨) =
1

𝑁
∑(𝑦𝑖 − 𝑜𝑖)

2

𝑁

𝑖=1

 (4)

Where y is a vector of computed outputs, o is a vector

of observed outputs, and N is the total number of

training data points.

Each execution of a backpropagation adjusts the

weights of the NN to be more accurate when exposed to

the training problem again. This adjustment is called

Stochastic Gradient Descent, as each execution of

backpropagation slightly adjusts the weights to be more

accurate in the future to that input but can only consider

the data it’s been trained with. Thus, the quality and

organization of training data becomes a primary driver

of NN model accuracy, and additional techniques exist

to add context to the NN, so it is not entirely empirical

in nature.

Two methods for adding physical context to a NN

model include Physics Influenced Neural Networks

(PINN) and Discrepancy Modeling. PINNs add

equations of motion to the cost function, which can

incur a high cost to network solutions that are not

physically feasible.[9] Discrepancy Modeling focuses

the cost function on the difference between an analytic

force model and observed outputs of a real system

controlled with analytic equations of motion.[10]

4.1. TRAINING, VALIDATION, TESTING

As NN are entirely data-driven, their resulting

capabilities are heavily influenced by training quality

and quantity. Given a fixed set of training data, the

process by which that data is processed in training can

have an impact on the resulting performance. I.e. it is

possible to increase system performance (or decrease)

by adjusting the order and methods that training data is

utilized in a training process.

The largest driver of system performance is training

quantity. On a basic level, more training typically

results in better performance, with caveats. A central

concern of training is overfitting to the training data. A

system that is “overfit” to its training data will perform

well on test data that is in-family with the training data,

but that performance falls off quickly if exposed to

novel inputs that are not in-family with training data. It

is important then to have training data that spans the

problem space in which the system is expected to

perform.

Given a set of training data, a common approach is to

split the training data into three groups: training,

validation, and testing. Occasionally the validation and

testing groups are combined or referred to

interchangeably. Of the three subsets of data, the

training set is the largest and first used to train the

system. The system’s performance cannot be directly

evaluated by its performance on the training data, which

would result in an unobserved bias and can lead to

overfitting, so the performance of the system is

evaluated on the validation set. It is at this point that the

hyperparameters (e.g. number of hidden layers, number

of neurons per layer) are tuned to increase performance.

Once a system has been trained on the training set and

adjusted through evaluation of the validation set, it is

again trained on the training and validation set with the

updated hyperparameters. Finally, a new “zero bias”

evaluation is calculated by evaluating performance on

the final Test set of training data. The performance of

the model on the test data set is used for comparison and

evaluation to external models.

5. TLE TRAINING PROCESS

The process to take TLE state inputs, organize ML

training data from them, train a ML model, and perform

regression testing is shown below in Fig. 4.

Figure 4. ML Training and Testing Diagram.

Considering a single object, a time history of TLE states

is compiled, as shown in the top left of Fig. 4. The TLE

states are preprocessed to create the training data. Each

training datum contains a pair of TLEs from the same

vehicle, separated in time (called the a priori state and

the a posteriori state). The training data is then utilized

by the ML Propagation model, which processes the

inputs to produce a posteriori states. The error between

the observed and computed a posteriori states drives the

training of the ML model.

After training and validation, the ML model is subjected

to regression testing on objects in the validation and/or

test set. Regression testing on the validation set allow

for tuning the model, and regression testing on the test

object is for final performance evaluation and

comparison.

The training data for this system is naturally broken into

time series inputs from various objects. An intuitive

method of crafting a training, validation, and test set of

data is to name specific objects to populate each subset

of training data. E.g. the time series histories of ten

objects can be used to train the model, then validation

can be evaluated on three different objects, and finally

tested on an additional object. In this example the model

is trained, validated, and tested on fourteen objects.

5.1. DATA DRIVEN MODEL

The prototype model utilized to explore this approach to

orbital decay characterization is called the Data Driven

Model (DDM). The DDM is able to “propagate” orbits

forward in time completely separated from numerical

integration and force modeling.

The inputs and outputs of the prototype NN that models

the decay of a LEO object’s orbit is displayed below in

Fig. 5.

Figure 5. Inputs and Outputs of Atmospheric NN

The prototype NN takes five values as input and three

values as output. The input values are:

1. a0: initial semi-major axis

2. e0: initial eccentricity

3. i0: initial inclination

4. t0: initial epoch

5. tf: final epoch

The inputs are normalized to be between 0 and 1. The

three outputs are:

1. af: initial semi-major axis

2. ef: initial semi-major axis

3. if: initial semi-major axis

The output states are likewise normalized to be between

0 and 1. The state vector has been reduced to defining

the shape of the orbit but loses information about orbit

placement: Right Ascension of the Ascending Node,

Argument of Periapsis, and the True (or Mean)

Anomaly. For this version, orbit shape is emphasized

over explicit position of the vehicle over time. Reducing

the state size in a neural network is called encoding and

can accelerate processing and accuracy by reducing the

number of correlations that need to be trained.

This prototype NN accepts as input the shape of a LEO

trajectory as defined by semi-major axis, eccentricity,

and inclination. The semi-major axis and eccentricity

are both expected to decrease as the time span increases,

while the inclination is expected to remain the same. It

remains as an output to a) enforce that inclination is

invariant with time and b) establish sensitivity to objects

with varying inclination. The motivation is that the

atmosphere is an oblate spheroid, which would have

low-inclination objects encounter higher densities than

high-inclination objects.

5.2. TRAINING DATA ORGANIZATION

From a trove of TLE state vectors across multiple

objects and timespans, it is necessary to properly

collect, organize, and format the state vectors and labels

to train the NN. Considering a single object to train

with, a time series history of state vectors in TLE format

are collected. For this analysis, focus is given to the first

quarter of 2020. TLEs from multiple objects that span

the first three months of 2020 are downloaded from

online databases.

Given a time series of TLE states from a single object in

LEO, a training pair can be made from any two TLE

states separated by positive time. A chart depicting valid

TLE pairs (in blue) for training data input is shown

below in Fig. 6.

Figure 6. Valid TLE pairs for training data highlighted in

blue.

s shown in Fig. 6, each TLE can be paired with

any/every TLE that has a higher epoch. The first TLE

can be paired with every subsequent TLE while the

N-1th TLE can only be paired with the Nth TLE. The

maximum number of training pairs from N TLEs of the

same object in time is thus

max(𝑁𝑡𝑟𝑎𝑖𝑛) =
1

2
(𝑁𝑇𝐿𝐸 − 1)2 (5)

E.g., given 101 TLEs from a single object, a maximum

of 5000 training pairs can be collected. To increase

training speed and adjust the time distribution of

training pairs, this maximum set of training pairs is

reduced by a thinning coefficient to randomly utilize a

subset of possible combinations. This thinning

coefficient can be a tuning factor to simultaneously

reduce computation time and improve distribution of

training pairs.

The model is affected by the order of the training data

processed by the model. It is possible to encounter

“training saturation”, a flavor of early-onset overfitting,

by poorly ordering the training data so that the model

becomes overfit to a subset of data before training has

completed. It is important then to properly randomize

the input data order to be robust against this

phenomenon. For this application this means

randomizing both training pairs in time and across

training objects.

5.3. INITIAL TRAINING OBJECTS

For the initial training of the data-driven system, a

subset of objects from the vast database of tracked

objects needs to be designed. If each TLE is considered

a noisy observation of the atmosphere, intuition would

guide that a robust training set would span a range of

orbital geometries to “observe” the atmosphere with

geometric diversity.

To have predictive value within orbital geometries of

interest, the model must be trained on objects that

inhabit those orbital geometries. The altitude range of

300-1000 km is considered for this exercise. The set of

objects to train from is thus limited to this altitude

range. Additionally, it is desirable to have objects with

diversity of orbital inclination to capture asymmetric

properties of the atmosphere. Finally, it is important to

capture objects that are not maneuvering, or to disallow

training pairs across a maneuver. By only selecting

rocket body objects, the chance of a maneuver within

the training time span is eliminated. Additionally, rocket

bodies have large radar cross sections which improve

their tracking characteristics and sensitivity to

atmospheric drag.

Below in Fig. 7 is a list of candidate objects which are

utilized in a training exercise again focusing on the

timespan of the first quarter of 2020.

Figure 7. Training objects Inclination and Altitude range.

Validation objects are highlighted in green, and test object

highlighted in red.

These candidate objects are all rocket bodies and do not

contain maneuvers over the training timespan of the first

quarter of 2020. Note the variation in inclination and

heights of apogee and perigee, respectively. With proper

training, the resulting model should have predictive

value for any object whose orbit occupies the space

spanned by the training objects.

6. MODEL TRAINING

A common approach to training a model has three steps

mentioned previously: training, validation, and testing.

The first step of training is called “training” because it

constitutes the bulk of backpropagation calculations. In

this exercise, the majority of the training objects are

used in the training step. Their TLEs over a common

time span are collected, and training pairs of starting-

ending states are generated. Similarly, a subset of

objects is used for validation and testing, and training

pairs are generated from their respective TLE states.

From the ten test objects over the time span of the first

quarter of 2020, there are 149,228 training pairs. The

inputs from the testing objects are randomized before

processing through the backpropagation routine. The

inputs are grouped into batches that are processed

sequentially to generate stochastic gradient steps that

update the system parameters. The training is

“complete” when all batches have been backpropagated

through the system.

As shown in Fig. 7, the three objects whose names are

boxed in green are dedicated for the validation set,

while the one object boxed in red is dedicated to be the

test set. Backpropagation is performed on the training

set, and then evaluated on the validation set. The

evaluation of the validation set allows the model to be

tuned on the training data without overfitting to that

specific training data.

With the training and validation sets, a sensitivity

analysis is run on the hyperparameters (i.e. number of

layers and neurons per layer) to ascertain the optimal

architecture for this application. Special care must be

taken to organize the initial weights and training data

order to return consistent solutions from the same set of

training data. Below in Fig. 7 is a correlogram depicting

the performance of each model architecture on the same

training data and validation data. Each model is

represented with a colored circle whose color

corresponds to the mean error, and the radius

corresponds to the variance of error. Not captured in this

analysis is the training speed and number of calculations

for each model. There is a positive correlation between

training clock time and number of trainable parameters

(weights between successive neurons), so larger systems

with more layers and neurons per layer take longer to

train. This will have more of an impact on larger

training data sets.

The results from Fig. 8 suggest a model in the interior of

the plot could be expected to be more reliable than

models at the extremes of hyperparameter range. The

results also suggest that the training is still in a data-

poor regime, as the ordering of training data and initial

weights of the model have a strong influence on the

resulting performance. This is a symptom of the

limitations to manually collecting training data, for

which automation could alleviate by significantly

expanding the training set. From these results, an

architecture of 4 layers of 64 neurons each (circled

below in Fig. 8) will be utilized for the remaining tests.

This analysis shall be repeated as the training and

validation data sets grow.

Figure 8. Correlogram depicting the error of each model in a

color scale with the variance of error as the radius of the data

points. Chosen architecture is circled in green.

7. MODEL TESTING

With the chosen architecture, the model is then trained

on the training set and tested more deeply on the test

vehicle CZ2C. To further stress the model and explore

its predictive performance beyond the training data time

span, the test object’s valid time span is extended from

the first quarter of 2020 to the first six months of 2020.

Below in Fig. 9 is a histogram of SMA error on the

extended time span test object.

Figure 9. Histogram of SMA error on the extended time span

test object after training.

The SMA errors roughly follow a gaussian curve

centered at 0.5 km, showing a slight positive bias.

Below in Fig. 10 is a histogram of eccentricity error on

the extended time span object after training.

Figure 10. Histogram of Eccentricity error on the extended

timespan test object after training.

The eccentricity errors carry a slight positive bias and

resembles a rough gaussian curve with slight positive

skew. Finally, the histogram of inclination error on the

extended time span object after training is below in Fig.

11.

Figure 11. Histogram of Inclination error on the extended

timespan test object after training.

While the test object offers a unique set of orbital

parameter inputs for the model and test pairs that are

beyond the training time span of the model, the model

shows good performance in predicting orbital

parameters.

To capture the performance across a wider range of

orbital parameters, the evaluation is repeated on the

training objects, but limiting the evaluation to the three

months after the training time span. I.e., the model is

trained on ten objects in the first quarter of 2020 and

then tested on the same objects in the second quarter of

2020.

Below in Fig. 12 is a histogram of SMA error on the

training objects in the 2nd quarter of 2020.

Figure 12. Histogram of SMA error on the training objects

within the 2nd quarter of 2020.

There seem to be two distinct trends from likely

different objects within the test set. There is a strong

gaussian curve centered between -1 and 0 km error, with

a “fat tail” that lingers above 3km of error. Below in

Fig. 13 is a histogram of eccentricity error on the

training objects in the 2nd quarter of 2020.

Figure 13. Histogram of Eccentricity Error on the training

objects within the 2nd quarter of 2020.

The eccentricity errors on the 2nd quarter objects show a

rough gaussian curve with a distinct plateau around

0.001. Finally, a histogram of inclination errors on the

training objects in the 2nd quarter of 2020 is shown

below in Fig. 14.

These tests show that the model has value in

propagating a subset of orbital elements in time with a

bounded set of errors. When the model is tested on a

time span beyond when it is trained it performs with

similar accuracy. The next section compares the data

driven model to the numerical integration of an

astrodynamics propagation engine.

Figure 14. Histogram of inclination error on the training

objects within the 2nd quarter of 2020.

8. TESTING VS NUMERICAL INTEGRATION

To investigate the performance capability of the NN

approach more fully, it must be placed in context

against numerical integration methods more commonly

used to predict the future state of vehicles in LEO. The

model is evaluated against the astrodynamics propagator

in FreeFlyer, which will propagate TLE states forward

in time using numerical integration through a complex

gravity and atmospheric model.

The most complex numerical integration is called the

FreeFlyer (FF) numerical model and is a numerical

integration with spherical harmonics gravity model and

analytic atmospheric model. Specifically, the FF

numerical model uses an Earth gravity model with 4

zonals and 4 tesserals. It also includes gravity from the

Sun and Moon and utilized an 8th order Runge-Kutta

numerical integrator with 9th order error threshold

checking. The analytic atmospheric model in the FF

numerical model is

𝜌(ℎ) = 𝜌0(1 + 𝜌1)𝑒
𝑆𝑒𝑓𝑓ℎ (6)

Where 𝑆𝑒𝑓𝑓 is the effective scale height that is

interpolated from a table to account for temperature

variations, and 𝜌1 is a correction term that is zero by

default.

Within FreeFlyer are also a Keplerian (Two-Body) and

SGP4 propagator. The Keplerian propagator assumes a

point mass Earth with no atmosphere, and the SGP-4

propagator is a Simplified Perturbation model that is

specific to the propagation of TLE data.

A notable difference operationally between the two

models is the computer clock time required to execute

either the data driven or FF model. To illustrate, the FF

models are evaluated on the test object over the first 180

days of 2020. Below in Fig. 15 is a plot of execution

time for different models vs propagation time. Included

are the DD model, the full force model numerical

integrator, the SGP-4 integrator, and the Keplerian

(Two-Body) model.

Figure 15. Clock time to execute model predictions between

FF and data driven models.

It is clear from Fig. 15 that the data driven model

execution is insensitive to propagation time span. An

80-day propagation takes the same amount of clock time

as a 10-day propagation. This is not true for the FF

numerical model, which takes longer clock time to

execute propagations of longer time spans. Both the

Keplerian and SGP-4 integrators are considerably faster

than the FF numerical model, but the DD model is still

slightly faster in execution time. This capability can be

important for highly parallelized applications that could

benefit from rapid calculations of propagations.

While the data driven model can be executed on any

propagation time with the same execution time, its

accuracy is less than that of the FreeFlyer model. To

illustrate, the errors from each model are extracted from

a test against the extended timespan test object. Below

in Fig. 16, the SMA errors from each model are plotted

as a function of propagation time.

Figure 16. SMA error vs Propagation time for each model.

Each model shows unique behavior: the Two-Body

model has the highest errors, and the Data-Driven

model shows a negative trend. The SGP-4 propagator

shows the smallest SMA errors over any time span.

Below in Fig. 17 are the eccentricity errors from each

model plotted as a function of time.

Figure 17. Eccentricity Error vs propagation time for each

model.

For eccentricity, the Data-Driven model is in-family

with the Two-Body model and has slightly lower errors.

The Numerical and SGP-4 integrators have nearly

identical performance and behavior. Finally, the

inclination errors from each model as a function of time

are shown below in Fig. 18.

Figure 18. Inclination error vs propagation time for each

model.

Similarly, the Data-Driven and Two-Body models are

in-family and show similar behavior while the SGP-4

and Numerical integrators both show smaller errors and

similar behavior. To summarize the performance

comparisons over 6790 TLE pairs, the aggregate

statistics of the errors of each model are shown below in

Table 1.

Table 1. Propagation error statistics from each model over

6790 test TLE pairs.
 Data Driven Numerical SGP4 Two-Body

SMA

error

(km)

mean -3.281E-01 3.750E-02 1.451E-04 3.155E+00

1-σ 3.611E-01 1.239E-01 1.102E-02 2.190E+00

Ecc.

Error

mean 4.530E-04 -2.993E-08 -3.857E-06 5.534E-06

1-σ 6.297E-04 7.787E-05 7.203E-05 1.011E-03

Inc.

Error

(deg)

mean -6.850E-02 -4.261E-05 -1.532E-04 3.632E-02

1-σ 1.105E-01 8.092E-04 1.304E-03 1.101E-01

Execution time

(sec)

0.40 15066.33 1221.96 896.46

Some caveats are worth considering. The FF models all

propagate a full set of state parameters while the DD

model encodes the state information to only “orbit

shape” as defined by SMA, eccentricity, and inclination.

The DD model could benefit from additional training on

more objects, which would be enabled with automated

TLE querying. Regardless, the stark calculation speed

difference is notable, three orders of magnitude faster

than the next quickest method (Keplerian).

9. DISCREPANCY MODELING

The model described thus far in this paper are fully

empirical or data-driven models. No equations of

motion are utilized, and no insight into the machinations

of the model is available beyond the matrix of weights

within the system itself. While the data driven model

has shown predictive value when properly orchestrated

and trained, it lacks the intuition of an analytical force

model and by itself not as accurate as numerical

integration.

A method to enhance numerical integration with force

modeling from first principles is to reformulate the

problem to isolate the scope of the NN to model the

discrepancy between numerical integration and True

states. Currently the data-driven model acts as an

incomplete replacement to numerical integration, and

the predictive value of propagating orbit “shape” as it

decays in Earth’s atmosphere has been established. By

refactoring to discrepancy modeling it may be possible

to enhance prediction accuracy beyond current

capabilities with numerical integration.[10]

10. CONCLUSIONS / FORWARD WORK

A neural network approach to predicting the “shape” of

a Low Earth Orbit (excluding specific true or mean

anomaly) over time due to orbital decay from

atmospheric drag is described. By leveraging the large

set of TLE data available online, it is proposed that such

a system could be trained on TLEs from across multiple

vehicles over a common time span. The process to

develop a neural network and organize its training data

for this task is described.

The analyses performed show that a neural network has

value in propagating orbital states forward in time. A

sensitivity analysis was performed on the validation

data to optimize the network hyperparameters. The

neural network is then trained on the training data to

produce a data driven model. That model is tested to

ascertain its performance in accuracy and speed. These

analyses are also performed on a numerical

astrodynamics propagator as a comparison against a

typical spacecraft propagation. The astrodynamics

propagator in FreeFlyer with default settings is utilized

as the benchmark.

The data driven model is tested on the test object and

against multiple propagators available in FreeFlyer,

namely the Keplerian model, the SGP4 propagator for

TLEs, and a full force model numerical integration. The

data driven model’s execution speed is invariant to

propagation time and is faster than any of the FreeFlyer

propagation models. The data driven model returned

comparable error performance to the Keplerian model,

but with larger errors than the SGP4 and numerical

model.

The next steps are to greatly increase the size of the

training data through automation, incorporate

discrepancy modeling, and develop a system that is

continually trained on new publications of TLEs.

Furthermore, analyses on possible applications of this

system shall be investigated, such as collision avoidance

analysis, orbital decay prediction, maneuver detection,

and onboard computing.

11. REFERENCES

1. Tapping, K. F. The 10.7 cm Solar Radio Flux.

Space Weather Journal Vol 11, Issue 7, July

2013

2. Fry, C. A., McLaughlin, C. A. Optimizing a

Long Short-Term Memory Neural Network to

Forecast Solar Flux. AAS Astrodynamics

Specialists Conference, August 2022

3. Wang, Y., Bai, X. Comparison of Gaussian

Processes and Neural Networks for

Thermospheric Density Predictions During

Quiet Times and Geomagnetic Storms. AAS

Astrodynamics Specialists Conference, August

2022

4. U.S. Standard Atmosphere, 1976. National

Aeronautics and Space Administration. NASA-

TM-X-74335

5. 27-Day Outlook of 10.7 cm Radio Flux and

Geomagnetic Indices. Online:

https://www.swpc.noaa.gov/products/27-day-

outlook-107-cm-radio-flux-and-geomagnetic-

indices

6. Pesnell, W. D., Schatten, K. H. An Early

Prediction of the Amplitude of Solar Cycle 25.

Solar Physics Vol 293, July 2018

7. Two Line Orbital Element Set File. Online:

https://ai-solutions.com/_help_Files/two-

line_element_set_file.htm

8. Rasamoelina, A. D., Adjailia, F., Sinčák, P. A

Review of Activation Function for Artificial

Neural Network. IEEE International

Symposium on Applied Machine Intelligence

and Informatics, Jan 2020.

9. Raissi, M., Perdikaris, P., Karniadakis, G. E.

Physics-informed neural networks: A deep

learning framework for solving forward and

inverse problems involving nonlinear partial

differential equations, Volume 378, 2019, pp

686-707

10. Brunton, S. L. (2022, August 5), Discrepancy

Modeling with Physics Informed Machine

Learning

https://www.swpc.noaa.gov/products/27-day-outlook-107-cm-radio-flux-and-geomagnetic-indices
https://www.swpc.noaa.gov/products/27-day-outlook-107-cm-radio-flux-and-geomagnetic-indices
https://www.swpc.noaa.gov/products/27-day-outlook-107-cm-radio-flux-and-geomagnetic-indices
https://ai-solutions.com/_help_Files/two-line_element_set_file.htm
https://ai-solutions.com/_help_Files/two-line_element_set_file.htm

