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BALLISTIC LUNAR TRANSFER DESIGN
USING THE DEEP SPACE TRAJECTORY EXPLORER

Brian P. McCarthy*, Jeremy Petersen†, and Diane C. Davis‡

In the coming years, numerous commerical companies and government agencies
plan to expand their presence in cislunar space. Subsequently, an understanding
of the cislunar gravitational environment is crucial to the success of these pro-
grams. Development of tools to effectively leverage natural dynamical structures
helps streamline the trajectory design process. In this investigation, the function-
ality of the JavaFX-based Deep Space Trajectory Explorer (DSTE) is extended
to construct ballistic lunar transfers to libration point orbits in the vicinity of the
Moon.

INTRODUCTION

In 2020, NASA released the agency’s lunar exploration program overview, providing Artemis
and Gateway status reports as well as plans for additional extended lunar missions.1 To enable such
endeavors, an understanding of the cislunar gravitational environment is crucial to the success of
the program. However, given the chaotic nature of a multi-body system, preliminary path planning
in this environment is challenging. To meet these challenges, development of tools to streamline the
preliminary trajectory design process that leverage dynamical structures in cislunar space is critical.
Several tools have previously been developed to facilitate the early design process in this multi-
body regime. The Adaptive Trajectory Design (ATD) software facilitates construction of arcs in the
circular restricted three-body problem (CR3BP) model to supply an initial guess to an ephemeris
differential corrections process.2, 3 The Poincare package was developed in JPL’s MONTE software
to aide in construction of itineraries in multi-body systems.4 Additionally, Generator and LTool
have previously been used for multi-body trajectory design.5, 6 The Deep Space Trajectory Explorer
(DSTE) was developed as a JavaFX-based tool to aid in preliminary trajectory design in multi-body
systems using interactive visualization techniques.7–10 In this investigation, the functionality of
DSTE is extended to construct ballistic lunar transfers (BLTs) to cislunar libration point orbits.

Several previous, current, and planned missions are leveraging ballistic lunar transfer trajectories
to reach the vicinity of the Moon. JAXA’s Hiten spacecraft, KARI’s KPLO mission, and NASA’s
GRAIL and CAPSTONE missions exploited BLT paths to successfully access to the lunar region,
as well as ispace’s HAKUTO-R mission, which is currently leveraging a BLT.11–15 This type of
transfer offers a reduced propellant cost as an alternative to direct lunar transfer trajectories, but
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typically requires a longer time of flight. Construction and characterization of BLTs have been
investigated by several researchers previously. Parker and Anderson explore ballistic lunar transfers
using dynamical systems and numerical methods within the context of a patched three-body model
as well as an ephemeris model.16 Whitley et al. initially examined BLTs for uncrewed missions
to the lunar Gateway.17 Parrish et al. survey ballistic lunar transfer options to NRHOs completely
within the context of an ephemeris model18 and examined operation considerations for BLTs to
NRHOs.19 Additionally, McCarthy and Howell as well as Scheuerle and Howell investigate ballistic
lunar transfers to periodic and quasi-periodic orbits within the context of a four-body model.20, 21

This investigation leverages methodologies developed by previous researchers implemented in the
DSTE to facilitate rapid construction of ballistic lunar transfers.

DYNAMICAL MODELS

There are two primary dynamical models used in this investigation, the CR3BP and the BCR4BP.
These models are of medium fidelity and simultaneously include the gravity from more than one
massive body. The fundamental motion within these models is constructed without introducing the
complexity of an ephemeris model.

Circular Restricted Three-Body Problem

The CR3BP offers higher fidelity and additional behaviors in comparison to the two-body model.
In this model, two gravitational bodies, denoted P1 and P2, remain in circular Keplerian orbits
about their mutual barycenter (i.e., center of mass). A third body, P3, moves under the gravitational
influence of the two larger bodies and is assumed to be massless. The model is defined relative
to a rotating coordinate system, where the +x̂ direction is defined from the barycenter toward P2.
The +ẑ direction is defined parallel to the direction of the orbital angular momentum vector for P1

and P2; the ŷ direction completes the orthonormal triad. The position and velocity of P3 relative

to the barycenter in the rotating frame are defined as x⃗ =
[
x y z ẋ ẏ ż

]T
, where the first

three and the last three elements are the position and relative velocity components, respectively.
The equations of motion for a particle moving in the CR3BP are a set of three, second-order scalar
differential equations of motion,

ẍ− 2ẏ =
∂U∗

∂x
(1)

ÿ + 2ẋ =
∂U∗

∂y
(2)

z̈ =
∂U∗

∂z
(3)

The pseudo-potential is a scalar defined solely as a function of position and the CR3BP mass pa-
rameter, µ = M2/(M1 +M2), where M1 and M2 are the masses of P1 and P2, respectively.22 The
pseudo-potential function takes the following form,

U∗ =
x2 + y2

2
+

µ

r
+

1− µ

d
(4)

where d =
√
(x+ µ)2 + y2 + z2 and r =

√
(x− 1 + µ)2 + y2 + z2 represent the distances of P3

relative to P1 and P2, respectively. The CR3BP admits a single integral of the motion, commonly

2



denoted the Jacobi Constant (JC). The Jacobi Constant is a function of the pseudo-potential and
the relative velocity magnitude expressed in the rotating reference frame,

JC = 2U∗ − v2 (5)

where v =
√

ẋ2 + ẏ2 + ż2. The Jacobi Constant is an energy-like quantity that characterizes
motion in a CR3BP system and remains constant for all time over any ballistic arc propagated in
the CR3BP. One advantage of the CR3BP model is that the system is time invariant. The CR3BP
is a good approximation for a multi-body environment and the trajectory characteristics generally
persist when transitioning results to a higher-fidelity ephemeris model.

Bicircular Restricted Four-Body Problem

The BCR4BP serves as a useful model for preliminary trajectory design where the complex dy-
namics in both the Earth-Moon and Sun-Earth regimes are significant. In this model, originally
introduced by Huang, the gravitational forces from the Sun, Earth, and Moon are incorporated into
a single framework while reducing the complexity as compared to an ephemeris model.23 The mo-
tion of an infinitesimal mass (P3) under the influence of three massive bodies, the Earth (P1), Moon
(P2), and Sun (P4), is governed by the differential equations in the BCR4BP. The Earth and Moon
move on circular paths about their mutual barycenter, denoted B1. Similarly, the Sun and B1 move
in circular, Keplerian motion about their mutual barycenter, denoted B2. In this formulation of the
BCR4BP, the motion of the Earth and the Moon are not further perturbed by solar gravity, thus, the
model is not coherent. Additionally, although not necessary, assuming that the Earth-Moon orbit
plane is the same as the Sun-B1 orbit plane is adequate for this analysis. The model is formulated
in terms of either an Earth-Moon or Sun-B1 rotating coordinate frame. For this investigation, the
equations of motion are defined relative to an Earth-Moon rotating frame, where the +x̂-direction
is defined from P1 to the second primary, P2. The +ẑ-direction is defined in the direction of orbital
angular momentum for P1 and P2; the ŷ-direction completes the orthonormal triad. Additionally,
this system is time dependent, where the location of the Sun in the Earth-Moon rotating frame is
defined by a single angle, θS . The Sun moves in a clockwise direction around B1 (i.e., θ̇S is nega-
tive), as illustrated in Fig. 1(a). The equations of motion that describe the motion of the massless
particle, P3, in the Earth-Moon rotating frame, are then defined,

ẍ = 2ẏ +
∂Υ

∂x
(6)

ÿ = −2ẋ+
∂Υ

∂y
(7)

z̈ =
∂Υ

∂z
(8)

Note that Υ is the pseudo-potential in the BCR4BP as formulated in the Earth-Moon rotating frame.
It is defined as,

Υ =
1− µ

r13
+

µ

r23
+

x2 + y2

2
+

m4

r43
− m4

a34
(x4x+ y4y + z4z) (9)

where xi, yi, and zi are the position components of Pi relative to the barycenter in the Earth-Moon
rotating frame, µ is the Earth-Moon mass parameter, µ = M2

M1+M2
, rij is the position magnitude
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of Pi relative to Pj , m4 is the non-dimensional mass of P4, m4 = M4
M1+M2

, and a4 is the semi-
major axis of the circular orbit reflecting the Sun-B1 motion. The term Mi is defined as the mass
of Pi. Additionally, the nondimensional rotation rate of the Sun about B1, θ̇S , is a function of a4
and m4, θ̇S =

√
1+m4

a34
− 1 = −0.9251986. Similarly, motion viewed in a Sun-B1 rotating frame

is also advantageous. In this frame, the x̂′-direction is oriented from the Sun to the Earth-Moon
barycenter, B1. The ẑ′-direction is defined as the direction of the Sun-B1 orbit angular momentum;
the ŷ′-direction completes the triad. The Sun-B1 rotating frame is illustrated in Fig. 1(b). It is
useful to visualize motion in this frame to understand the influence of solar gravity on trajectories
that include excursions beyond the Earth-Moon vicinity. Transformations of the states between
the two rotating frames is straightforward.24 The BCR4BP does not possess any integrals of the
motion; however, an energy-like quantity, denoted the Earth-Moon Hamiltonian, is defined in the
Earth-Moon rotating frame,

H = 2Υ− v2 (10)

where Υ is the pseudo-potential function defined in Equation (9) and v is the relative velocity mag-
nitude of the spacecraft in the Earth-Moon rotating frame, v =

√
ẋ2 + ẏ2 + ż2. Properties of the

Hamiltonian provide insight to effectively leverage ballistic lunar transfers, as noted by Scheuerle
et al.25 This formulation of the four-body problem offers a higher-fidelity environment than the
CR3BP, but retains a reduced complexity, in contrast to an ephemeris model.

(a) (b)

Figure 1. (a) Earth-Moon rotating frame and (b) Sun-B1 rotating frame (right) as
defined in the BCR4BP.

DEEP SPACE TRAJECTORY EXPLORER AND PERIAPSIS POINCARÉ MAPS

The DSTE leverages JavaFX for an interactive, visual approach to trajectory design in multi-
body systems. The user interface allows a trajectory designer to select primaries to define a CR3BP
or BCR4BP system. Initial conditions are numerically integrated in these models, seamlessly in-
corporating multi-threading capabilities to distribute the computation of trajectory paths. Events
are defined along the trajectory paths that define surfaces of section for the creation of interactive
Poincaré maps. For example, surfaces of section defined by periapsis conditions are employed to
generate periapsis Poincaré maps, fundamental to constructing ballistic lunar transfers in this in-
vestigation. There are two required conditions that define periapsis, or, more specifically, a point
of closest approach along a path relative to a massive body. The first condition requires that the
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position vector of a state along a trajectory path relative to the primary be perpendicular to the ve-
locity vector relative to the same primary; that is, the dot product between the position and velocity
vectors is equal to zero,

r⃗ · v⃗ = 0 (11)

where r⃗ is the position vector of the spacecraft realtive to a primary body and v⃗ is the relative,
rotating velocity vector of the spacecraft consistent with the differential equations formulated in the
rotating frame. The first condition designates an apsis location along the trajectory, either periapsis
or apoapsis. The second condition is derived to ensure that the derivative of the first condition is
greater than zero,

v2 + r⃗ · ˙⃗v > 0 (12)

where v is the magnitude of the spacecraft velocity and ˙⃗v is the time derivative of the relative velocity
as observed in the rotating frame, i.e., the relative acceleration. This second condition specifies that
the first condition designates a periapsis, rather than an apoapsis point. The surface of section for
the periapsis map is the appropriate hyperplane for assessment of these two conditions.

In addition to the generation of Poincaré maps, the DSTE provides the capability to compute
families of multi-body periodic orbits. Members of the Earth-Moon L2 northern halo family and
distant retrograde orbit (DRO) family are computed in the CR3BP and rendered in Figures 2(a)
and 2(b). A differential corrections and numerical continuations scheme are used to construct these
families of orbits, as well as other families of orbits in an Earth-Moon CR3BP system within the
DSTE. The DSTE also provides functionality to compute stable and unstable manifold trajectories
as well as transfer arcs to and from periodic orbits. Periapsis maps, periodic orbit generation, and
transfer generation functionality provide a foundation of tooling required to construct BLTs in the
DSTE.

(a) (b)

Figure 2. Subsets of the (a) Earth-Moon L2 northern halo family and (b) the Earth-
Moon DRO family computed in the DSTE.

CONSTRUCTING BALLISTIC LUNAR TRANSFERS

The framework for constructing initial guess solutions for ballistic lunar transfers to libration
point orbits formulated by McCarthy and Howell as well as Scheuerle and Howell is implemented
within the DSTE.20, 21 As Scheuerle and Howell note, periodic orbits from the CR3BP coupled
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with transfer arcs from the BCR4BP provide an initial guess of a BLT to transition to a higher-
fidelity ephemeris model. To begin the design process, a destination periodic orbit is selected in the
DSTE. Since solar gravity is leveraged along a BLT path, the BCR4BP dynamics are incorporated
to construct possible transfer paths in the DSTE. To find transfer paths, a process is developed in
the DSTE. First the periodic orbit is discretized into a set of states. Each of these states represents
a possible arrival location into the orbit. To explore possible paths at a variety of Sun-Earth-Moon
geometries, each state is initialized at range of Sun angles as well. For example, in Figure 3(a),
an L2 northern halo orbit is discretized into 45 states. If 36 different Sun-Earth-Moon geometries
are considered, a set of 1620 initial conditions is produced that are considered as possible arrival
locations along the orbit. All of these initial conditions are propagated in reverse time for a user-
defined time of flight, and the periapsis points relative to the Earth are computed along each path.
Of the periapsis points recorded, only trajectories that have periapsis points within a certain radius
of the Earth are recorded and stored, as illustrated in Figure 3(c). This process effectively isolates
trajectories that, when propagated in forward time, produce transfers that depart the vicinity of
the Earth and transit directly into the destination orbit. Furthermore, a range of ∆v magnitudes
and directions can also be incorporated into generating the set of initial conditions to increase the
solution space for stable periodic orbits. This process can also be considered in forward time,
producing paths that return a spacecraft from an orbit to the vicinity of the Earth.

(a) (b)

(c)

Figure 3. (a) Destination orbit is discretized into a set of states. (b) States are prop-
agated in reverse time at a range of Sun angles. (c) Only trajectories that possess
periapsis radii close to the Earth are recorded.
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The Batch Transfer Tool interface in the DSTE allows a user to effectively execute this process of
generating transfers. As an example, consider a member of the northern L2 halo family computed
in the Earth-Moon CR3BP, which is plotted in the Earth-Moon rotating frame in Figure 4(a). The
interface to this tool is rendered in Figure 4(b), where the red curve on the right side of the window
represents a projection of the destination L2 halo orbit in the x̂ŷ plane in the Earth-Moon rotating
frame. A set of options and filters in the pane on the left side that allows the user to specify which
initial conditions along the orbit are propagated in reverse time (rendered as the green dots along
the projection of the halo orbit). The options include the propagation time, a range of magnitudes
and directions of the arrival ∆v, and the range of Sun angles of each initial point. Each of these
initial conditions is numerically integrated for the propagation time specified by the user, exploiting
native multi-threading capabilities provided by JavaFX. In this example, 23580 initial conditions are
numerically integrated and the perigee points are recorded along each of the resulting trajectories.
Additionally, a set of filters allows the user to specify which periapses satisfy desired properties.
The filters include,

• Escape Distance: Distance calculated dynamically as the trajectory is propagated from the
barycenter of the system. If the distance is greater than the Escape Distance, the numerical
integration halts. This filter is useful to reduce the overall computation time by removing
trajectories that will likely not return to the Earth-Moon vicinity without having to propagate
for the full time of flight.

• Number of Periapses: The number specifying how many periapses relative to the Earth are
encountered before the trajectory integration is terminated. By filtering trajectories with large
numbers of periapses, solutions with excessive times of flight are excluded.

• Min/Max Radius: Desired radius bounds relative to the Earth. Trajectories that possess peri-
apses radii greater than the maximum or less than the minimum are discarded. By bounding
the minimum and maximum perigee radius to near-Earth space, it isolates transfers that pro-
duce a path directly from Earth to the destination orbit.

• Remove Prograde/Retrograde Checkboxes: Evaluates the ẑ-component of the cross product
between the periapsis radius vector and velocity vector. If “Remove Prograde” is selected,
then trajectories with a positive ẑ component are removed and “Remove Retrograde” is se-
lected, then trajectories with a negative ẑ component are removed. Filtering out retrograde
(or prograde) trajectories isolates transfers that are more realistic from a launch perspective.

• Limit: The maximum number of periapses to be evaluated over all propagations. All propaga-
tions stop when this limit is reached. When RAM is limited, this filter stops further generation
of periapsis and trajectory data.

Trajectories are evaluated during runtime to determine if they satisfy the desired filters. Trajectories
that include periapses that do not satisfy the filters are removed during runtime from the list of
potential transfers. To isolate BLT trajectories, the minimum radius is set to the nominal radius of
the Earth, 6378 km, and the maximum radius is set to 20,000 km to ensure that trajectories with
periapses near Low Earth Orbit (LEO) are not discarded. This setup simulates a transfer trajectory
with an initial state immediately after a translunar injection (TLI) maneuver from a parking orbit.
The “Remove Retrograde” box is checked such that only prograde periapses near the Earth are
included, to simulate a more realistic departure geometry. Lastly, the number of periapses is set
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to unity, to isolate transfers that have shorter times of flight. Since the L2 halo orbit selected as
the destination is an unstable orbit, it possesses stable manifold trajectories that asymptotically
approach the orbit. Thus, no insertion maneuver is imparted in DSTE when generating the BLTs to
this orbit. However, recall that the L2 halo orbit is computed in the CR3BP, and the dynamics used
for generating the transfers are in the BCR4BP, similar to the technique by Scheuerle and Howell.20

Consequently, this method uses two different models, where the interface between the models is
at the insertion at the destination orbit. After all the initial conditions are integrated and filtered, a
Earth-centered periapsis map is created, as illustrated in Figure 5(a) in the view with perigee points
that satisfy the criteria specified in the tool. Additionally, these trajectories are rendered in the list
in Figure 5(b), all representing potential transfers directly from Earth to the destination halo orbit.
Note that the DSTE allows the user to also place the cursor over any of the transfers to obtain
information about the transfers, such as the magnitude and direction of the insertion ∆v and the
instantaneous Jacobi Constant.

(a) (b)

Figure 4. (a) Destination Earth-Moon L2 southern halo orbit, rendered in the Earth-
Moon rotating frame. (b) Selection of points along orbit are used as potential insertion
locations from ballistic lunar transfer.

(a) (b)

Figure 5. (a) P1-centered periapsis map showing perigee points associated with po-
tential ballistic lunar transfers to an unstable L2 halo orbit. (b) Filtered ballistic lunar
transfers that provide direct access to the destination L2 halo orbit.
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Transfers to Stable and Nearly Stable Orbits

Cislunar orbits possess a wide variety of characteristics that make them desirable for various mis-
sion scenarios. In the previous example, the destination orbit is an unstable L2 halo orbit. However,
stable and nearly stable orbits possess characteristics that are desireable for human spacecflight.
Namely, the Artemis 1 mission recently operated in a DRO for a half-revolution during the first
Orion test flight beyond the Moon, and the Gateway spacecraft is planning to operate in a 9:2 syn-
odic resonant L2 Near Rectilinear Halo Orbit (NRHO).26 DROs are known to be stable orbits, and
thus, do not possess any stable or unstable manifolds to asymptotically approach or depart the orbit.
Furthermore, the Gateway’s NRHO is only slightly unstable, and the stable/unstable manifolds are
not useful for transfer generation to/from the orbit. The DSTE provides features that make the de-
sign process straightforward for generating ballistic lunar transfers to these types of orbits as well.
Consider a DRO that is of similar size to the Artemis 1, with a perilune radius of approximately
70,000 km. To generate transfers to this DRO in the DSTE, insertion maneuvers are required since
the DRO is a stable orbit. Insertion maneuvers are imparted with a range between 1 m/s and 100
m/s in the velocity direction and a periapsis map relative to the Earth is created. By setting the
mininum and maximum periapsis radius filters to 6378 km and 20000 km, respectively, the perigee
map is rendered in the Earth-Moon rotating frame in Figure 6(a). The trajectories associated with
the points on this map are also rendered in Figure 6(b), which shows that that there are numerous
options and trajectory geometries that reach this DRO. The transfer trajectory boxed in blue in Fig-
ure 6(b) requires a ∆v of 100 m/s to insert into the DRO and the trajectory boxed in red in Figure
6(b) leverages an outbound lunar flyby and requires an insertion ∆v of 61 m/s. These trajectories
along with the destination DRO are rendered in Figures 7(a) and 7(b). Note that the Earth and Moon
are scaled larger than their actual size in the 3D views.

(a) (b)

Figure 6. (a) P1-centered periapsis map showing perigee points associated with poten-
tial ballistic lunar transfers to a lunar DRO. (b) Transfer trajectory options to DRO
associated with points from perigee map.

The BLT generation process is repeated to design transfers to a 9:2 synodic resonant southern L2

NRHO, the orbit chosen for NASA’s lunar Gateway station. The orbit is considered unstable, but
the hyperbolic manifolds associated with this NRHO depart prohibitively slowly. Thus, imparting
a ∆v to insert into the orbit is a more effective approach. Using the 9:2 NRHO as the destination
orbit, a set of initial conditions is selected along the section of the orbit near perilune, since it has
been previously demonstrated that insertion near apolune is typically requires a higher insertion
∆v.18 The periapsis map along with the NRHO and initial conditions on the NRHO are displayed
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(a) (b)

Figure 7. Ballistic lunar transfers to a lunar DRO without (a) and with (b) a lunar
flyby. The insertion ∆v for each of these transfers is 100 m/s and 61 m/s, respectively.

in Figure 8. Note that on the right side of the map, perigee points exist that are outside the bounds
of the 20,000 km maximum perigee radius filter. F In this scenario, the Number of Perigee points
filter is set to 2. The points on the right side of Figure 8, mostly colored in shades of blue and
purple, represent the first perigee points along the trajectories. The second perigee points associated
with the backwards propagation of each trajectory appear on the left side of Figure 8, within the
specified 20,000 km radius limit of the Earth. Two candidate BLTs to the 9:2 NRHO are rendered
in the Earth-Moon rotating frame in Figures 9(a) and 9(b), where the first candidate requires a 71
m/s insertion maneuver and second candidate BLT includes an outbound lunar flyby, with a 66 m/s
insertion ∆v. The framework developed in the DSTE demonstrates the flexibility to generate initial
BLT solutions to various cislunar destinations, regardless of stability properties.

Figure 8. Perigee map for transfers generated to 9:2 NRHO projected into the x̂ŷ
plane of the Earth-Moon rotating frame.

TRANSITIONING TRANSFERS TO AN EPHEMERIS MODEL

The CR3BP and BCR4BP both offer useful insight into the dynamical behavior associated with
ballistic lunar transfers and possible destination orbits; however, validation in a higher-fidelity
model is an important step in the design process. There are several software packages that facilitate
transition and optimization of higher-fidelity trajectories, such as Copernicus, GMAT, FreeFlyer,
STK, EMTG and ATD.27–32 The DSTE focuses on constructing trajectories in medium fidelity
models, such as the CR3BP and the BCR4BP, and serves a sandbox to explore and filter through
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(a) (b)

Figure 9. Two BLTs to the 9:2 synodic L2 NRHO (a) without and (b) with an outbound lunar flyby.

the solution space during the preliminary design process. The solutions found in the DSTE then
serve as initial guess trajectories to be transitioned to a higher-fidelity model. This investigation
leverages the FreeFlyer commercial off-the-shelf software package for ephemeris propagation and
transition to the ephemeris model. FreeFlyer’s optimization capabilities provide a convenient way
to formulate a corrections problem that transitions an initial guess obtained in the DSTE to the
Sun-Earth-Moon ephemeris model.33 The corrections problem is formulated as a multiple shooting
scheme to satisfy a set of constraints. The first step in the transition process is to select an ini-
tial epoch corresponding to the Sun-Earth-Moon geometry associated with the initial guess found
in the BCR4BP in the DSTE. The methodology to select this epoch is outlined by McCarthy and
Howell.21 The next step is to discretize the trajectory into a set of nodes, or patch points. Each
node is associated with a six-element state vector, an epoch, and a propagation time. In addition to
discretizing the transfer trajectory, 10 revolutions of the destination orbit are discretized into nodes
to ensure the geometry of the destination orbit is maintained. Lastly, the state vector associated
with each node is transformed into the Moon-centered J2000 inertial frame. Scheuerle and Howell
as well as Boudad demonstrate that certain nodes, depending on the distance from the Earth-Moon
neighborhood, should be transformed from the Earth-Moon or Sun-B1 rotating frame into the iner-
tial frame.20, 34 In this investigation, states that have a radius greater than 1,000,000 km relative to
the Earth-Moon barycenter are transformed from the Sun-B1 rotating frame into the Moon-centered
J2000 frame and states that have a radius less than 1,000,000 km are transformed from the Earth-
Moon rotating frame. By performing the transformation in this way, the geometry of initial guess
obtained in the DSTE is maintained. Once the states are transformed into the inertial frame, a free-
variable vector is constructed with the elements of the states of each node, the epoch of each node,
and the time of flight associated with each node. State and epoch time continuity are constrained be-
tween successive nodes and the initial node is constrained to a 150 km altitude perigee to represent
a post-TLI state.

In Figures 10, 11, and 12, the initial guesses from the DSTE, propagated in an ephemeris model
in FreeFlyer, are rendered in three different frames. In Figure 10, a BLT to an unstable L2 halo orbit
is rendered, Figure 11 illustrates a BLT to a lunar DRO without an outbound lunar flyby, and Figure
12 illustrates a BLT to the 9:2 synodic L2 NRHO without an outbound lunar flyby. The ephemeris
model includes point mass modeling for the Sun, Earth, Moon, and all planetary bodies including
Mercury, Venus, Mars, Jupiter, Saturn, Uranus, and Neptune. Celestial object state information
is obtained from the DE430 planetary and lunar ephemeris.35 Three views are included in each
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figure: the Earth-centered inertial MJ2000 frame, the Sun-B1 rotating frame, and the Earth-Moon
rotating frame. Each patch point, designated by the white circles, is propagated forward in time in
the ephemeris model, based on the discretized time of flight from the DSTE initial guess. The initial
guesses shown in Figures 10, 11, and 12 highlight the impact of transitioning the trajectory from a
simplified model into a higher-fidelity ephemeris model, as state continuity is lost between the end
of a segment and the beginning of the next segment, particularly during the ballistic lunar transfer
phase. The larger gaps in continuity between segments during the transfer phase show the different
transition process for patch points above the 1,000,000 km threshold, i.e., transforming states from
the Sun-B1 rotating frame to the inertial frame versus transforming states from the Earth-Moon
rotating frame to the inertial frame. While the gaps in the initial guess trajectories appear large, there
is a significant improvement of the initial guess for the inertial states as compared to transforming
all patch points only from the Earth-Moon or Sun-B1 rotating frame.

(a) (b)

(c) (d)

Figure 10. Initial guess for BLT to an unstable L2 halo orbit in an ephemeris
model, rendered in the (a) Earth-centered inertial frame, (b) Sun-B1 rotating frame,
(c) Earth-Moon rotating frame, and (d) zoomed in view of the periodic orbit in the
Earth-Moon rotating frame.

To converge the entire trajectory in the full ephemeris model, a two-step multiple-shooting pro-
cess is utilized. First, the destination orbit is converged independently to ensure the geometry of
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(a) (b)

(c) (d)

Figure 11. Initial guess for BLT to a lunar distant retrograde orbit in an ephemeris
model, rendered in the (a) Earth-centered inertial frame, (b) Sun-B1 rotating frame,
(c) Earth-Moon rotating frame, and (d) zoomed in view of the DRO in the Earth-
Moon rotating frame.

the destination orbit is maintained in the ephemeris model. In Figure 13, the initial guesses for the
unstable halo orbit, DRO, and NRHO are rendered in the left column, and converged ephemeris
trajectories in the ephemeris model appear in the right column. Recall that the initial guess from
the DSTE includes 10 revolutions of the destination orbit. Note that the ephemeris solution in the
right column shows the distortion effects on the shape of the periodic orbit when it is converged, but
the geometry of the orbit is maintained. Once the periodic orbit has converged, the second step is
to add the transfer phase to the multiple-shooting problem to solve for state continuity between the
BLT and the periodic orbit and to constrain the initial condition at Earth to have a 150 km perigee
altitude. In Figures 14, 15, and 16, the fully converged trajectories are rendered; they maintain a
geometry similar the initial guess from Figures 10, 11, and 12. In all three transfer examples, a
trajectory correction maneuver (TCM) modeled as a velocity discontinutiy is allowed during the
BLT near apogee to provide more flexibility during the corrections process. Utlimately, the unsta-
ble L2 halo and L2 NRHO required this velocity discontinuity to converge (or TCM) to achieve
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(a) (b)

(c) (d)

Figure 12. Initial guess for BLT to the 9:2 synodic resonant L2 NRHO in an
ephemeris model, rendered in the (a) Earth-centered inertial frame, (b) Sun-B1 ro-
tating frame, (c) Earth-Moon rotating frame, and (d) zoomed in view of the DRO in
the Earth-Moon rotating frame.

convergence, while the sample transfer to the DRO is achieved without a TCM. A velocity discon-
tinuity representing an insertion maneuver is also included in the DRO and NRHO examples. Table
1 contains a summary of the ∆v’s required for the three examples and a comparison between the
simplified model from the DSTE and the ephemeris model in FreeFlyer. The transfer to the unsta-
ble L2 halo orbit includes a TCM of 81.9 m/s in the ephemeris model, as compared to the fully
ballistic trajectory in the DSTE. The BLT to the DRO includes an insertion maneuver of 140.9 m/s
in the ephemeris model, an increase over the 100 m/s computed with the simplified dynamics in the
DSTE. Finally, the sample transfer to the L2 NRHO in the ephemeris model requires a combined
dV of 107.7 m/s from a TCM and an insertion maneuver, while the combined total computed in
the DSTE is 71 m/s. Overall, the ∆v costs of the converged trajectories in the higher-fidelity force
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model do not diverge significantly from the simplified model used by the DSTE. This investigation
presents a method to rapidly construct ballistic lunar transfers with reasonable ∆v costs. Further
reduction in ∆v costs can be found use optimization techniques, as demonstrated by Parrish et al.18

The solutions constructed in the DSTE can also be used to seed these optimization techniques as an
initial guess.

Table 1. Summary of ∆v’s for BLT examples.

L2 Halo DRO L2 NRHO

Model BCR4BP Ephemeris BCR4BP Ephemeris BCR4BP Ephemeris

TCM ∆v [m/s] – 81.9 – 0.0 – 43.5
Insertion ∆v [m/s] – – 100.0 140.9 71 64.2

Total [m/s] 0 81.9 100 140.9 71 107.7

CONCLUDING REMARKS

Trajectory design in multi-body regimes presents unique challenges, particularly during prelim-
inary phases of the design process and generation of an initial guess. To address these challenges,
development of software tools to construct initial guesses is critical. This investigation leverages
the capabilities of the Deep Space Trajectory Explorer for transfer trajectory design in these sensi-
tive multi-body regimes. Specifically, the DSTE is leveraged to construct ballistic lunar transfers,
which employ solar gravity to directly access the lunar vicinity from Earth. The features in DSTE
allow users to rapidly create, visualize, and interact with large datasets associated with Poincaré
maps. These features are utilized to develop a workflow to generate BLTs to cislunar orbits. This
workflow includes leveraging periapsis Poincaré maps and filtering techniques to isolate BLTs of
interest and rapidly generate initial guesses to be transitioned to a higher-fidelity model. Three ex-
amples are presented that demonstrate the flexibility of the methodology. Ballistic lunar transfers to
an unstable halo orbit, a nearly stable NRHO, and a stable DRO are constructed. Then, a process
is summarized that exploits the capaibilites of FreeFlyer to transition solutions found in the DSTE
to a higher-fidelity model. The process to transition trajectories employs a differential corrections
method to ensure that desirable characteristics are maintained when obtaining a trajectory in the
Sun-Earth-Moon ephemeris model. This investigation presents an end-to-end methodology using
the DSTE to construct ballistic lunar transfers to cislunar orbits and seeks to highlight that effective
software tooling streamlines the design process to generate initial guess solutions in this complex
dynamical regime.
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