
Heliocentric Escape And Lunar Impact  
From Near Rectilinear Halo Orbits

Written by: ���Diane C. Davis,* Kenza K. Boudad,† Rolfe J. Power,‡ 
	 and Kathleen C. Howell§

®



 1 

HELIOCENTRIC ESCAPE AND LUNAR IMPACT                      
FROM NEAR RECTILINEAR HALO ORBITS 

Diane C. Davis,* Kenza K. Boudad,† Rolfe J. Power,‡  
and Kathleen C. Howell§ 

Spacecraft departing from the Gateway in a Near Rectilinear Halo Orbit (NRHO) 

experience gravitational forces from the Moon, the Earth, and the Sun, all of 

which can be simultaneously significant. These complex dynamics influence the 

eventual destinations of the departing spacecraft. The current investigation 

examines the flow of objects leaving NRHOs in the Bicircular Restricted Four-

Body Problem, and results are applied to heliocentric escape and lunar impact 

trajectories in a higher-fidelity ephemeris model. Separation maneuver 

magnitude, direction, and location are correlated with successful departure to 

various destinations via maps and specific examples.  

INTRODUCTION 

The Gateway1 is proposed as a crewed outpost supporting a variety of exploration missions. As a staging 

ground for lunar surface missions and for exploration beyond cislunar space, the Gateway will experience 

spacecraft periodically arriving and docking, and subsequently, spacecraft and objects with a wide range of 

shapes and masses will also depart the Gateway for other destinations. Notable examples of Gateway 

departures include lander descent to the lunar surface, safe disposal of discarded logistics modules or ascent 

elements to heliocentric space, and deployment of cubesats to various locations in cislunar space. Each 

departure is governed by the dynamics of the Gateway orbit and the surrounding dynamical environment. 

The current baseline orbit for the Gateway is a Near Rectilinear Halo Orbit (NRHO) near the Moon.2 NRHOs 

exhibit nearly stable behavior, but over time, any unmaintained object in such an orbit eventually departs due 

to the small instabilities associated with these NRHOs. A separation maneuver speeds the departure from the 

NRHO, but the effects of the maneuver on the spacecraft behavior depend on the location, magnitude, and 

direction of the burn. The departing flow changes significantly based on these burn parameters, resulting in 

a large design space. Employing maps and other visualizations aids in condensing the potential departure 

options. The maps and visuals enable a broad understanding of the design space and identification of 

particular trajectories that lead to desired behavior; broad regions of the separation maneuver space are also 

excluded as undesirable.   

Previous investigations3,4 examined departure from the NRHO and escape from the Earth-Moon vicinity 

from the perspective of logistics module (LM) disposal. The current investigation extends this work, 

exploring several additional aspects of the departure dynamics from the NRHO. First, the bicircular restricted 

4-body problem (BCR4BP) is employed to characterize the natural flow of trajectories departing the NRHO. 

Then, maneuvers that result in escape to heliocentric space are explored. Groups of separation burns that 
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yield sufficient energy to escape the Earth-Moon vicinity are identified through Hamiltonian maps, and then 

maneuver orientations that allow solar gravity to pull a departing spacecraft into heliocentric space are 

determined.  Finally, lunar impact trajectories originating from the NRHO are explored. 

DYNAMICAL MODELS 

In this investigation, three dynamical models are employed. The CR3BP5 provides a framework for 

investigation of departure dynamics and flow nearby the NRHO before and immediately after separation 

from the Gateway, including lunar impact trajectories. In this regime, the primary gravitational influences on 

the spacecraft are the Earth and Moon, and the CR3BP is an effective approximation for the dynamics. As 

the spacecraft departs the immediate vicinity of the NRHO near the Moon, the effects of the Sun become 

significant. Thus, the BCR4BP6 is employed to characterize the behavior of a departing spacecraft. The 

BCR4BP incorporates the influence of solar gravity on the Earth-Moon-spacecraft three-body system and 

offers an increase in fidelity over the CR3BP, while still offering insight into the underlying dynamical 

behavior in the system. Finally, an N-body model based on ephemeris data provides higher-fidelity analysis 

for particular mission scenarios. 

The Circular Restricted 3-Body Problem 

The CR3BP describes the motion of a massless spacecraft affected by two primary gravitational bodies 

such as the Earth and the Moon. The model assumes that the two primary bodies are point masses orbiting 

their center of mass in circular orbits. The spacecraft moves freely under the influence of the two primaries, 

and its motion is described relative to a rotating reference frame. No closed-form solution exists to the CR3BP 

equations of motion, but five equilibrium solutions, the libration points, are denoted L1 through L5. Stable 

and unstable periodic orbit families, including the L2 halo orbits, emerge in the vicinity of the libration points. 

A single integral of the motion exists in the CR3BP, the Jacobi constant,5 written 

                                                                       𝐽 = 2𝑈∗ − 𝑣2 (1) 

where v is the rotating velocity magnitude. The pseudopotential U* is a function only of position, defined as 

 𝑈∗ =
1

2
(𝑥2 + 𝑦2) +

𝜇

𝑟
+

(1−𝜇)

𝑑
 (2) 

 where x, y, and z are components of the position vector relative to the barycenter in the Earth-Moon rotating 

frame and 𝑥̇, 𝑦,̇  and 𝑧̇ are components of the velocity vector in the same frame. The values d and r are the 

distances between the spacecraft and P1 and P2 respectively, and 𝜇 =
𝑚2

𝑚1+𝑚2
 is the mass parameter of the 

system where m1 and m2 are the masses of the two primaries.  An energy-like quantity, the Jacobi constant 

limits the motion of the spacecraft to regions in space where v2 > 0, with zero velocity surfaces (ZVSs) 

bounding the regions within which the spacecraft can move freely. For values of Jacobi constant greater than 

that associated with the L1 libration point, the ZVSs form closed regions around each of the two primaries. 

As the energy of the spacecraft trajectory increases, the value of Jacobi constant decreases until, at the L1 

value, the ZVSs open at the L1 libration point and the spacecraft can move between the two primaries. 

Similarly, when the value of the Jacobi constant decreases to the value associated with L2, the ZVSs open at 

L2 and the spacecraft is able to escape the vicinity 

of the primaries entirely.  For spacecraft orbiting in 

one of the selected NRHOs, the CR3BP is a good 

approximation for the behavior of the trajectory.  

The Bicircular Restricted 4-Body Problem 

In scenarios where the gravitational influence of 

the Sun is non-negligible, a higher-fidelity model is 

necessary to accurately describe the spacecraft 

behavior. The BCR4BP incorporates the 

gravitational effects of three massive bodies, for 

instance, the Earth, the Moon and the Sun, on the 

motion of a spacecraft.7 The mass of the spacecraft 

is assumed to be negligible in comparison to the 
Figure 1. BCR4BP, Earth-Moon rotating frame 
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masses of the other bodies. In this model, the Earth and the Moon are assumed to move in circular orbits 

around their common barycenter, denoted 𝐵1, while the Sun and 𝐵1 move in circular orbits with respect to 

the Earth-Moon-Sun barycenter, labeled 𝐵2, as denoted in Figure 1. The BCR4BP is not a coherent model: 

the perturbing acceleration from the Sun does not influence the motion of the Earth and the Moon, thus, the 

motion of the Moon is not a solution to the Sun-Earth CR3BP. The equations of the motion in the CR3BP 

are extended to include the solar gravitational influence as follows, 

                                             𝑥̈ = 2 𝑦̇ +
𝜕Υ∗

𝜕𝑥
, 𝑦̈ = −2 𝑥̇ +

𝜕Υ∗

𝜕𝑦
, 𝑧̈ =

𝜕Υ∗

𝜕𝑧
 (2) 

where 

                                                           Υ∗ = 𝑈∗ +
𝑚

𝑟𝑠 𝑠/𝑐
−

𝑚

𝑎3 (𝑟̅𝑠 ∙  𝑟̅𝑠/𝑐), (3) 

𝑚 =
𝑚𝑆

𝑚𝑒+𝑚𝑚
 is the nondimensional mass of the Sun, and 𝑎 =

𝑟𝑠

𝑟𝑒𝑚
 is the nondimensional distance between the 

Earth-Moon barycenter and the Sun. The independent time variable, 𝑡, explicitly appears in the BCR4BP 

pseudo-potential. Therefore, the BCR4BP is time-dependent and does not admit an integral of the motion. 

However, a scaled version of the Hamiltonian is defined to be consistent with the Jacobi constant in the 

CR3BP, i.e., 

                                                          𝐻(𝜃) = 2Υ∗ − √𝑥̇2 + 𝑦̇2 + 𝑧̇2 (4) 

The time-dependent nature of the differential equations in the BCR4BP yields time-dependent equilibrium 

solutions. These instantaneous equilibrium solutions correspond to the perturbed, or oscillating, CR3BP 

libration points (𝐿𝑖), and are denoted 𝐸1(𝜃𝑠) through 𝐸5(𝜃𝑠). Similarly, time-dependent ZVSs in the BCR4BP 

define instantaneous forbidden regions for a given value of H. Note that the relative positions of the primaries 

in the BCR4BP are periodic: one period corresponds to the time between consecutive alignments of the Earth, 

the Moon and the Sun (in this order) and is approximately equal to 29.5 days, i.e., one synodic period.  
 

The N-Body Ephemeris Model 

For applications in mission scenarios where high-fidelity modeling accuracy is required, N-body 

differential equations and planetary ephemerides are employed. The N-body dynamics describe the motion 

of a particle of interest (e.g., a spacecraft) in an inertial frame relative to a central body under the gravitational 

influence of the same central body and additional perturbing bodies. Within this analysis, the relative position 

of each perturbing body with respect to the central body is instantaneously computed by employing NAIF 

SPICE ephemeris data. The Moon is selected as the central body for numerical integration in the J2000 

inertial frame. The Earth and Sun are included as point masses, and the Moon’s gravity is modeled using the 

GRAIL (GRGM660PRIM) model truncated to degree and order 8. Solar radiation pressure (SRP) acting on 

a sphere is also included in the force model. 

For multi-revolution propagations in the NRHO prior to a disposal maneuver, orbit maintenance 

maneuvers (OM maneuvers) are implemented. In some simulations, operational errors on the spacecraft are 

considered in the higher-fidelity modeling. In these simulations, each OM maneuver is associated with a 

navigation error on the spacecraft state: both low navigation errors of 1 km in position and 1 cm/s in velocity 

and larger navigation errors of 10 km in position and 10 cm/s in velocity are considered. Maneuver execution 

errors comprising 1.5% in magnitude and 1° in direction, as well as a fixed magnitude of 1.42 mm/s, are 

applied to each OM maneuver. Mismodeling in SRP assumptions provide 15% error in area and 30% error 

in coefficient of reflectivity. Momentum wheel desaturations are assumed to occur once per revolution near 

apolune with a translational Δv component of 3 cm/s applied in a random direction. In addition, the disposal 

maneuver is applied with a 1.5% execution error in magnitude with lower or higher navigation errors on the 

state, as specified in each case. All values are 3σ and are implemented as Gaussian errors with zero mean. 
 

REFERENCE NRHOs AND DEPARTURE  
 

The current analysis focuses on two NRHOs. The reference orbit for the Gateway spacecraft is a southern 

L2 NRHO in a 9:2 resonance with the lunar synodic period; that is, the spacecraft completes nine revolutions 

within the NRHO in the time it takes the Sun-Earth-Moon geometry to repeat twice. With a perilune radius 

of approximately 3,250 km and an apolune radius of about 71,000 km, a spacecraft in the 9:2 NRHO 

completes one revolution about every 6.5 days. The second NRHO of interest is a southern L2 NRHO in a 
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4:1 resonance with the lunar synodic period. With a longer period of about 7.3 days, the 4:1 NRHO passes 

farther from the Moon with a perilune radius of approximately 5,750 km and an apolune radius of about 

75,000 km. Perfectly periodic in the CR3BP, the two NRHOs retain their periodicity in the BCR4BP,8 but 

they become quasi-periodic orbits in the higher-fidelity ephemeris force model. In any of the three models, 

the NRHOs are nearly stable. The maximum stability indices9 associated with the 9:2 and 4:1 NRHOs in the 

CR3BP have magnitudes equal to about 1.3 and 1.6 respectively, where a maximum stability of index of 1 

represents a marginally stable orbit in a linear analysis. In contrast, the maximum stability index in the L2 

halo family reaches a value of over 600 where the family bifurcates from the L2 Lyapunov orbit family. While 

the 9:2 and 4:1 NRHOs are nearly stable, over time perturbations cause an object to depart if the orbit is not 

maintained. Departure from the NRHO is assessed based on a momentum integral.10 The momentum integral, 

MI, is a line integral of the position vector from the initial time, t0, to the current time, t, 
 

                                         MI(𝑡) =  ∫ 𝑥(𝜏)𝑥̇(𝜏)
𝑡

𝑡0
+ 𝑦(𝜏)𝑦̇(𝜏) + 𝑧(𝜏)𝑧̇(𝜏)𝑑𝜏 (4) 

For a perfectly periodic halo orbit in the CR3BP and BCR4BP, the MI is also periodic and returns to zero 

after precisely one period. In the higher-fidelity ephemeris model, the value of the MI does not return 

precisely to zero over one period, however, it does remain bounded while the spacecraft remains in the 

NRHO. Over time, as the orbit of a perturbed or unmaintained spacecraft diverges from the NRHO, the 

magnitude of the MI also increases, and departure is defined in terms of the divergence of the MI. In the 

current analysis, when the magnitude of the MI crosses a threshold of 0.1, the debris object is considered 

‘departed’ from the NRHO. Since the stability index of the 9:2 NRHO is greater than one, an object moving 

along the NRHO will depart without orbit maintenance. In the CR3BP, depending on the convergence 

tolerance and numerical integration techniques, a departure from the 9:2 NRHO without a maneuver occurs 

after about 230 days.  In the higher-fidelity ephemeris model, departure times without a separation maneuver 

or orbit maintenance range from 70 - 100 days for a quiet, uncrewed spacecraft to 30-60 days for a noisy, 

crewed configuration. When a separation maneuver is applied to an object departing the Gateway, departure 

time decreases. A previous investigation4 characterizes time to depart as a function of maneuver magnitude 

and true anomaly for maneuvers in the velocity, normal, and binormal directions in the CR3BP. The fastest 

observed departures occur after separation burns in the velocity direction at perilune. Such maneuvers are 

further explored in the ephemeris force model. For velocity-direction separation maneuvers at perilune, 

certain maneuver magnitudes lead to consistent times to depart across all revolutions in both the 9:2 and 4:1 

NRHOs, while other maneuver magnitudes result in variable departure times from one revolution to the next.  
 

FLOW ANALYSIS IN THE BICIRCULAR RESTRICTED FOUR-BODY PROBLEM 
 

Once an object has departed from the NRHO, its ultimate destination depends on the departing flow. 

Two models are used to explore the departing behavior. While an object remains in or near the NRHO, the 

CR3BP effectively describes its behavior.  Once the object has departed, solar gravity has a significant effect 

on the trajectory, and the BCR4BP is employed for higher-fidelity analysis. 

First, information about the departure dynamics from the NRHO is investigated using dynamical systems 

theory and the Earth-Moon CR3BP. Although described as ‘nearly stable’ orbits, NRHOs in a 9:2 resonance 

and a 4:1 resonance with the lunar synodic period possess a saddle mode, as apparent in Table 1 and, thus, 

stable and unstable manifolds. The six-dimensional angle between the stable and unstable eigenvectors along 

a revolution of the 9:2 synodic resonant NRHO appears in Figure 2. Near apolune, the eigenvectors are 

oriented in distinct directions, and the angle reaches a maximum value of 53 degrees. Close to the Moon, 

however, the angle between the stable and unstable eigenvectors is small, with a minimum value of less than 

4 degrees at perilune. The small angle indicates that the eigenvectors (and, thus, manifolds) are not well 

defined near perilune; for example, a step along the unstable eigenvector can result in a propagated step close 

to the unstable manifold, a step near the stable manifold, or a combination of both modes. The proximity of 

the eigenvector spaces represents an additional challenge in the near vicinity of the Moon, along with strong 

nonlinear effects and numerical challenges.  
 

Table 1. Stability quantities associated with the CR3BP 4:1 and the 9:2 NRHOs. 

Orbit Eigenvalues Stability indices 

4:1 NRHO 1, 0.5067 − 0.8621𝑖, −2.9027 1, 0.5067, −1.6236 

9:2 NRHO 1, 0.6846 + 0.7289𝑖, −2.1774 1, 0.6846, −1.3183 
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Figure 2. Angle between unstable and stable eigenvectors of the 9:2 NRHO 

 

The baseline 9:2 NRHO is discretized and patch points are selected where the eigenvectors are the most 

distinct, that is, near apolune, as depicted in Figure 3a. A step along the unstable eigenvector is computed, 

and the resulting state is propagated in the Earth-Moon CR3BP. Trajectories along the unstable manifold for 

initial states post-apolune appear in Figures 3b and 3c, while trajectories for initial states prior to apolune 

appear in Figures 3d and 3e. The geometries are consistent with departure/disposal trajectories observed 

previously:3,4 excursions to the L1 side of the Moon, as observed in Figures 3b and 3d, a large loop on the L2 

side, in Figure 3c, and departures with a ‘sharp turn’, in Figure 3e. 
 

 

Figure 3. Manifold structures near apolune of the 9:2 NRHO in the CR3BP 

These stability results are extended to the Earth-Moon-Sun Bicircular Restricted 4-Body Problem 

(BCR4BP). Previous work8 demonstrated that specific NRHOs corresponding to a synodic resonance, 

including the 4:1 and the 9:2 NRHOs, are transitioned to the BCR4BP while maintaining the geometry, the 

perilune and apolune radii and the linear stability properties. The 4:1 NRHO in the CR3BP and its BCR4BP 

counterpart appear in Figure 4a. The six-dimensional angle between the stable and unstable eigenvectors 

along the 4:1 NRHO in each model is plotted in Figure 4b. Note that the angle is computed for four 

revolutions of the 4:1 NRHO in the CR3BP, accommodating the longer period of the 4:1 NRHO in the 

BCR4BP. Consistent with the angle between unstable and stable eigenvectors of the 9:2 NRHO in Figure 2, 

the angle for the 4:1 NRHO is less than 10 degrees near perilune for both the CR3BP and the BCR4BP 4:1 

NRHOs. Similarly, the eigenvectors are oriented in distinctly different directions closer to apolune, as 

observed for each revolution of the 4:1 NRHO in the BCR4BP in Figure 4b. The 4:1 NRHO in the BCR4BP 

includes four lobes: two on the 𝐿1 side of the CR3BP 4:1 NRHO and two on the 𝐿2 side of the CR3BP 4:1 

NRHO. For the lobes on the 𝐿1 side, the angle between stable and unstable eigenvector directions exceeds 

100° near apolune. On the 𝐿2 side, the angle is approximately 70° near apolune. For reference, the angle 

along the 4:1 NRHO in the CR3BP is approximately 80° close to apolune. The stability characteristics and 

the eigenvectors direction in the 4:1 synodic resonant NRHO remain consistent when transitioned to the 

BCR4BP.  
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Figure 4. CR3BP 4:1 NRHO in blue and BCR4BP 4:1 NRHO in orange, as viewed in the Earth-

Moon rotating frame (a). Angles between unstable and stable eigenvectors of each NRHO (b). 

The BCR4BP 4:1 NRHO is discretized 

and a set of patch points close to the apolune 

is selected, as apparent in Figure 5. A 

representative subset of the manifolds is 

constructed and plotted in purple in Figure 

5. The departing flow near apolune is 

structured and consistent with Figure 3e and 

the departure trajectories previously 

computed.2,3 Manifold structures are well 

defined near apolune of the 4:1 NRHO in 

the CR3BP and the BCR4BP. Near perilune, 

the angle between stable and unstable 

eigenvector directions is less than 10°. Thus, 

accurate computation of the manifolds in the 

lunar vicinity is challenging.  
 

ESCAPE TO HELIOCENTRIC SPACE 
 

Once an object has departed the NRHO, its destination depends on the effects of the Sun, the Earth, and 

the Moon on the trajectory. The object may impact the Moon, it may remain in orbit in the Earth-Moon 

vicinity, or it may escape to heliocentric space. Various objects departing the Gateway may be delivered to 

heliocentric space for disposal or for science and exploration applications. Examples include spent logistics 

modules or disposable ascent modules, debris or wet trash, and cubesats. For any object attempting to depart 

the Earth-Moon vicinity with a relatively small maneuver, two basic prerequisites are necessary. First, the 

energy in the Sun-B1 frame must be sufficient for the time-varying ZVSs to be open at the E1 and E2 libration 

points in the Sun-B1 system. Second, the orientation within the Sun-B1 frame must be favorable for the solar 

gravity to pull the object through the portals. The current investigation considers each of these constraints for 

specific examples, employing maps and other visuals to condense the large data space. 
 

Energy in the Sun-B1 system: Hamiltonian behavior 
 

The Hamiltonian in the Sun-B1 system is a representation of the energy of a given trajectory; as defined 

here, a lower value of the Hamiltonian represents a higher energy. As discussed, the time-varying 

Hamiltonian describes osculating ZVSs that govern the allowable motion of an object in the Sun-Earth-Moon 

BCR4BP. To achieve escape from the Earth-Moon vicinity, the energy must be sufficiently high, or the 

Hamiltonian must be appropriately low, such that the ZVSs allow open portals at the E1 and E2 libration 

points in the Sun-B1 system. For example, a sample escaping trajectory appears in the Earth-Moon rotating 

frame in Figure 6a and in the Sun-B1 rotating frame in Figure 6b in the ephemeris model. The Sun-B1 

Hamiltonian appears as a function of time in Figure 6c; the values of H corresponding to the E1 and E2 portals 

are indistinguishable at this scale and appear as a black line. The MI over time is plotted in Figure 6d. In each 

image, the trajectory is colored orange while the orbit is maintained prior to the separation maneuver. Note 

the large oscillations in the Sun-Earth Hamiltonian as the spacecraft remains under the close influence of 

lunar gravity, and the near-periodicity in the MI prior to the separation burn. At time t = 0, a separation burn 

Figure  5.  Representative unstable mainfolds near 

apolune in the BCR4BP 4:1 NRHO. 
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is executed, and the trajectory is colored pink while it remains near the NRHO. The MI slowly starts to 

diverge from its periodic behavior. After about 38 days, the value of the MI exceeds 0.1, and the trajectory, 

now colored blue in Figure 6, is considered departed from the NRHO. The Hamiltonian at this point is below 

the value corresponding to the E1 and E2 libration points, and the spacecraft is sufficiently energetic to escape 

the Earth-Moon vicinity. Approximately 60 days after the separation burn, the spacecraft passes through the 

E1 portal, and the trajectory, now in green, is considered to be in heliocentric space.    
   

 
Figure 6.  Escaping trajectory in the Earth-Moon rotating frame (a), the Sun-B1 rotating frame (b) 

and the corresponding Sun-B1 Hamiltonian (c) and Momentum Integral (d). 

The departing trajectory in Figure 6 represents a single successful heliocentric departure trajectory. 

Further examination of the Hamiltonian in the ephemeris force model yields insight into the relationship 

between maneuver magnitude and the resulting energy in the Sun-B1 system. Specifically, for separation at 

a given location along the NRHO, maneuvers are explored that result in Hamiltonian values sufficiently low 

to correspond to E1 and E2 portals that are open, allowing escape to heliocentric space. A maneuver with 

location, direction and magnitude leading to consistent and predicable behavior is sought. Consider a 

separation maneuver applied in the inertial velocity direction at every perilune for 56 consecutive revolutions 

within the NRHO, or for approximately one year. A given maneuver can lead to: 

1. Consistent behavior across the year with energy insufficient to allow escape from the vicinity of the 

Earth through the Sun-B1 portals.  

2. Inconsistent behavior throughout the year, with some departing trajectories possessing sufficient 

energy to escape and others with insufficient energy to escape 

3. Consistent Hamiltonian values reflecting sufficient energy to escape from the vicinity of the Earth 

for a maneuver at every perilune passage throughout the year.  

For reliable heliocentric escape, the third option is desirable. However, a larger maneuver does not 

necessarily correspond to a higher energy or a more reliable result. For example, the Hamiltonian as a 

function of time appears in Figure 7a-c for three small values of Δv magnitude delivering separation burns in 

the inertial velocity direction at perilune. In Figure 7a, a maneuver magnitude of 0.1 m/s leads to departure 

from the NRHO after eight additional revolutions within the NRHO, with values of the Hamiltonian 

consistently higher than the value at the E1/E2 portals (represented by the black line). A lunar flyby after 

about 100 days shifts the Hamiltonian value significantly in some cases. In the Figure 7b, a higher separation 

maneuver of 0.7 m/s results in inconsistent departure times from the NRHO and corresponding inconsistent 

Hamiltonian behavior from one revolution to the next. In Figure 7c, a maneuver of 1 m/s yields departure 

after 4 additional revolutions in the NRHO. After departure from the NRHO, the Hamiltonian is below the 

black line in nearly all cases, indicating sufficient energy to escape the Earth-Moon vicinity. When the 

orientation of each departing trajectory is appropriately aligned in the Sun-B1 frame, it is able to escape. Thus, 

a maneuver magnitude of 1 m/s yields favorable behavior when the separation burn is performed in the 

inertial velocity direction at perilune for most revolutions. However, a small variation in magnitude breaks 
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the consistent patterns of behavior: a variation larger than +/- 0.1 m/s leads to inconsistent or unfavorable 

behavior. Thus, errors in navigation or maneuver execution render a 1 m/s maneuver magnitude unreliable 

for heliocentric escape. 

 
Figure 7.  Hamiltonian as a function of time for low (left), medium (center), and high (right) 

maneuver magnitudes for 56 consecutive revolutions in the NRHO 

The same pattern is repeated as the maneuver magnitudes increase, with Hamiltonian values consistently 

too large to allow escape, followed by inconsistent escape behavior as the trajectory transitions from 

departure after N revs in the NRHO to departure in N-M revs, followed by consistently low Hamiltonian 

values as the maneuver magnitude increases. Then, the Hamiltonian increases along with maneuver 

magnitude until inconsistent behavior is again observed. In Figures 7d to 7f, maneuvers of 1.8, 2.5, and 3.5 

m/s yield earthbound, variable, and energetic NRHO departures, respectively. Similarly, in Figures 7g to 7i, 

separations burns of 5.5 m/s, 10 m/s, and 14 m/s display low energy, inconsistent, and high energy departures, 

respectively, as the departure transitions from 2 additional revolutions within the NRHO to immediate 

departure after the separation burn. 

A low separation burn magnitude of 1 m/s, a medium Δv magnitude of 3.5 m/s, and a larger maneuver 

magnitude of 15 m/s all yield consistent high-energy departures. Note that the window of reliable high energy 

departures around the nominal value increases along with the maneuver magnitudes. A tolerance of only 

+/- 0.1 m/s is available to ensure high energy departure in the 1 m/s case, while a variation of +/- 0.4 m/s 

continues to produce consistently low Hamiltonian values for 3.5 m/s separation burns. If the nominal 

maneuver is 15 m/s, a variation of +/- 2 m/s continues to yield Hamiltonian values that allow escape from 

the Earth-Moon vicinity. The higher magnitude is more robust in response to errors but does not remove the 

importance of Sun orientation or maneuver location and direction. 

The Hamiltonian plots in Figure 7 represent separation from a single location along the NRHO (perilune) 

and in a single maneuver direction (inertial velocity direction). While separation at perilune is effective for 

achieving escape, both the Gateway and the departing object are susceptible to perturbations and errors in 

the sensitive region near perilune; separation at other locations along the NRHO may be more attractive. To 

seek other potential separation locations, a set of Hamiltonian maps is developed to explore the maneuver 
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design space for a variety of burn locations, directions, and magnitudes and to identify separation maneuvers 

that yield robust, high-energy departures. A sample appears in Figure 8a for 1 m/s separation burns departing 

from perilune at a particular revolution along the 9:2 NRHO and in every possible direction. Each separation 

location is parameterized by osculating true anomaly, TA, although the NRHO is not a Keplerian orbit. The 

osculating TA along the 9:2 NRHO is depicted in the rotating frame in a concurrent study.11 The center of 

the map represents a maneuver in the inertial velocity direction. The horizontal axis represents maneuver 

yaw direction with respect to the velocity vector and ranges from -180° to 180°. The maneuver pitch angle 

is plotted along the vertical axis and spans -90° to 90°. The velocity, normal, and binormal directions are 

marked on the map as white points. Each colored point on the map represents the outcome of a separation 

burn. If the Hamiltonian at NRHO departure, defined as the time when the momentum integral reaches a 

value of 0.1, is greater than HE1-E2, then the energy is insufficient to escape, and the point is colored blue. If 

the Hamiltonian at NRHO departure represents sufficient energy to escape, that is, H < HE1-E2, the point is 

colored red. If the spacecraft impacts the Moon prior to NRHO departure, the point is colored yellow; the 

lunar impact cases are explored in detail in a following section. There are several observations to note. First, 

the Hamiltonian maps do not necessarily reveal a maneuver that leads to heliocentric escape, only whether 

the energy at departure is sufficient to escape. Second, the maps in Figure 8 are generated in the ephemeris 

force model, so the results for a given NRHO location may vary from one revolution to the next. However, 

the maps yield useful information on favorable locations and directions for maneuvers that yield trajectories 

with sufficient energy for heliocentric escape. They also provide insight concerning the robustness of a 

maneuver in the presence of navigation and maneuver execution errors as well as reliability from one 

revolution to the next.   
 

 
Figure 8. Hamiltonian maps representing separation burns in three locations along the 9:2 NRHO. 
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Recall the 1 m/s separation burn executed at perilune in the inertial velocity direction depicted in Figure 

7c. This maneuver results in a Hamiltonian value, H, at departure that is low enough to allow heliocentric 

escape along most revolutions; the maneuver is represented by the point directly in the center of Figure 8a, 

which is correspondingly colored red. It is surrounded by a region of other red points, implying that the 

departure is robust to a pointing error in the separation maneuver within the yaw and pitch boundaries of the 

red region. As the maneuver direction changes further, the red region is surrounded by blue areas representing 

departures insufficiently energetic to escape, and then by thin red rings representing directions that lead to 

high energy departures but without tolerance for pointing errors. A second large red region exists in the anti-

velocity direction in Figure 8a. As the departure location varies, the red regions shift from the velocity and 

anti-velocity directions to areas on the map representing other burn directions, or they change from solid 

regions to rings. For example, a map representing departure from a true anomaly TA = 150° appears in Figure 

8b, as this location is notably favorable from a Hamiltonian perspective. Note the solid red region centered 

at yaw = -50° and pitch = 50°, representing a candidate for a separation burn away from perilune. A departure 

location further along the NRHO at apolune, or TA = 180°, appears in Figure 8c. In this map, the solid red 

region is replaced by red rings, representing departures that are less robust to navigation and pointing errors. 

As the burn magnitude changes, the characteristics of the maps also evolve. Though not depicted in the figure, 

the red region centered on the velocity direction disappears as the magnitude passes 1.1 m/s, signifying a 

narrow tolerance to errors in burn magnitude. Large red regions return to the maps for separation burns of 

3.5 m/s; corresponding maps appear for the same three locations along the NRHO in Figures 8d to 8f. As the 

Δv magnitude is further increased to 5 m/s, velocity-direction maneuvers at perilune are insufficiently 

energetic to escape and are represented by the blue region in the center of the map in Figure 8g. The 

corresponding time history of the Hamiltonian for a 5 m/s separation from perilune in the velocity direction 

at perilune appears in Figure 7d, demonstrating consistently insufficient departure energies. Maneuvers in 

the anti-velocity direction with a 5 m/s burn at perilune lead to lunar impact, as is apparent from the large 

yellow region on the map, and thus are not candidates for heliocentric escape. As departure moves along the 

NRHO, as in Figures 8h and 8i, rings of sufficient energy remain visible but large solid regions do not appear 

in the maps for 5 m/s separation burns. Increasing the energy further to 15 m/s, however, yields large, robust 

red regions in the Hamiltonian maps at both perilune and at TA = 150°. Note the large yellow region 

surrounding the anti-velocity direction; these points correspond to lunar impact trajectories, which are 

examined in detail in the CR3BP in the next section. Though not included in the current study, maps are 

generated for the 4:1 NRHO as well, identifying maneuver parameters that lead to energetic departure and 

explaining why 1 m/s burns in the velocity direction at perilune along the 4:1 NRHO do not lead to 

heliocentric departure. 

The maps in Figure 8 represent departure along a single revolution in the quasi-periodic reference 9:2 

NRHO. Overlaying maps representing sequential revolutions within the NRHO reveals the robustness of a 

given separation burn to variations in the NRHO. For example, consider the maps in Figure 9. Each map 

represents departure at a particular burn magnitude and from a particular separation location. In this case, the 

red points reflect separation burns that yield sufficient energy at departure for heliocentric escape for each of 

9 consecutive revolutions (representing 2 synodic periods in the NRHO and, thus, each possible Sun-Earth-

Moon-Spacecraft geometry). The blue regions represent maneuvers that lead to insufficient departure energy 

for at least one revolution among the nine. Darker blue regions signify burns resulting in sufficient energy 

for escape from the first revolution tested but insufficient energy in later revolutions. Similarly, bright yellow 

regions represent burns that always result in lunar impact, while darker yellow areas denote maneuvers that 

lead lunar impact during at least one but not all of the nine revolutions. For a 1 m/s burn from perilune, in 

Figure 9a, while a red ring remains in the map, the velocity direction itself is not consistently robust from 

revolution to revolution; separation from perilune along some revolutions within the NRHO yields lower-

energy departures. At TA = 150°, no burn direction consistently leads to sufficiently energetic departure. 

Therefore, while a 1 m/s maneuver direction is available that yields energetic departure along any given 

revolution, no single direction is reliable over every revolution of the nine tested. If the burn magnitude is 

increased to 3.5 m/s, however, a velocity-direction maneuver at perilune and a small region near yaw = -25° 

and pitch = 50° at TA = 150° yield consistent high-energy departures across all nine revolutions. Similarly, 

with a burn magnitude of 15 m/s, dependable departure directions exist at both perilune and at TA = 150°.   

In Figures 8 and 9, maps corresponding to three possible separation burn locations are depicted. To 

explore the continuum of burn locations along the NRHO, similar maps are stacked into a 3D figure, with 
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yaw and pitch represented along the two horizontal axes and maneuver TA along the vertical axis. Examples 

appear in Figure 10 for burn magnitudes of 3.5 m/s and 15 m/s. In these maps, only the points corresponding 

to departures with sufficient energy to escape are included, each colored according to its Hamiltonian value 

at departure. Maneuvers that result in insufficiently energetic departures or lunar impacts are excluded. In 

both cases, a sphere at the center of the map signifies a group of robust successful maneuvers centered on the 

velocity direction at perilune. In Figure 10a, for a 3.5 m/s separation burn, the sphere extends from                        

-60° < TA < 60° in location, and from -30° < yaw < 30° and -30° < pitch < 30° in direction. As the burn 

moves away from perilune, another region associated with successful separation burns appears near TA = 

150°, marked in Figure 10a by an arrow. A similar map appears in Figure 10b for Δv = 15 m/s. At the higher 

burn magnitude, two regions representing burns that result in energetic departures exist away from perilune; 

one near TA = 150° and another near TA = -150°; both are marked by arrows. Outside of these regions, only 

narrower rings of energetic departures exist; hence the focus on TA = 0° and TA = 150° in this study. 
 

 
Figure 9.  Hamiltonian maps for departure from 9 consecutive revolutions along the 9:2 NRHO 

 

 
Figure 10. 3D Hamiltonian maps for two separation burn magnitudes 

 

The robustness of the departure energy for selected separation burns in the presence of navigation and 

maneuver execution errors are tested via Monte Carlo analysis. Because orbit determination errors are 

expected to be higher at perilune than elsewhere in the orbit,12 the analysis assumes 3σ navigation errors of 

10 km in position and 10 cm/s in velocity for departures at perilune and errors of 1 km in position and 1 cm/s 

in velocity for departures at TA = 150°; the other errors included in the analysis are described previously.  

The first set of Monte Carlo results addresses robustness along a single revolution within the reference 

NRHO. That is, for a given departure epoch, the reliability of a separation burn is explored. In each case, 100 

Monte Carlo trials are executed and the number of trials that lead to heliocentric escape after a 200-day 

propagation is recorded. The results appear in Table 2. The first set of results corresponds to departures at 

perilune, as in the left-hand column in Figure 8. Departures in the velocity direction (yaw = pitch = 0°) lie in 

the center of the large red regions in Figures 8a, 8d, and 8j. For a 1 m/s maneuver, the navigation errors 

perturb the departures significantly, and only 33 of the 100 trials achieve escape to heliocentric space. 

Increasing the Δv magnitude to 3.5 m/s improves the robustness, with 89% of trials successfully escaping the 

Earth’s vicinity. For departures from perilune, a burn of 15 m/s results in 100% success; the larger burn 
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magnitude is necessary to ensure escape to heliocentric space in the presence of the larger navigation errors 

expected near perilune. Maneuvers with a non-zero pitch angle are also explored. Such options exist as 

narrower bands in the Hamiltonian maps in Figure 8. The results from one sample direction (yaw = 0°, pitch 

= 75°) for 1 m/s and 3.5 m/s Δv magnitudes appear in Table 2, without improvements in robustness. However, 

by moving away from perilune, the expected navigation errors decrease, and reliability improves. Consider 

departures from the Gateway at TA = 150°, as in the center column in Figure 8. For maneuver magnitudes 

equal to 1 m/s, 3.5 m/s, and 15 m/s, large red regions exist in the maps corresponding to sufficiently energetic 

departures. These regions are characterized by negative yaw and positive pitch values. A 1 m/s separation 

maneuver directed in the center of the corresponding red lobe such that yaw = -50° and pitch = 25° results in 

a 97% success rate. Increasing the Δv magnitude to 3.5 m/s and aligning the direction with yaw = -25° and 

pitch = 25° yields all 100 trials escaping from the Earth-Moon vicinity. Similarly, a 15 m/s burn results in 

100% of the trials achieving heliocentric escape. Narrower bands of red also exist in the Hamiltonian maps 

for these three maneuver magnitudes for departures at TA = 150°. For example, separation burns of 1 m/s 

and 3.5 m/s in a direction defined by yaw = 50° and pitch = -25° yield 91% and 77% success respectively. A 

maneuver of 15 m/s directed such that yaw = 120° and pitch = -60° leads to 100% heliocentric escape. As 

expected, selecting a burn direction centered in one of the larger red regions leads to improved reliability. 
   

Table 2.  Monte Carlo trials for separation burns over a single NRHO revolution: successful escapes 

  

TA = 0  

(perilune, 10 km/10 cm/s nav errors) 

TA = 150  

(away from perilune, 1 km/1 cm/s nav errors) 

  

yaw = 0,  

pitch = 0 

yaw = 0,  

pitch = 75 

yaw = -50, 

pitch = 25 

yaw = -25, 

pitch = 25 

yaw = 50, 

pitch = -25 

yaw = 120, 

pitch = -60 

1 m/s 33/100 43/100 97/100  91/100   

3.5 m/s 89/100 38/100   100/100 77/100   

15 m/s 100/100     100/100   100/100 
 

The results in Table 2 represent departures along a single revolution in the NRHO. Recall from Figure 9 

that maneuver directions leading to escape vary from one revolution to the next in the ephemeris force model. 

To explore robustness across many revolutions within the reference NRHO, an expanded Monte Carlo 

analysis is run. The analysis focuses on the most reliable maneuvers identified in Table 2, that is, separation 

burn magnitudes of 3.5 m/s and 15 m/s, and separation locations at TA = 150°. For a given separation burn 

magnitude, direction, and true anomaly, 10 trials are run for departures at TA = 150° along each of 56 

consecutive revolutions within the reference NRHO, for a total of 560 trials over a one-year span. The 

maneuver directions are selected from the maps in Figure 8d and 8f, marked with black dots. The maps 

suggest that the selected maneuver directions may yield sufficient energy to escape across all revolutions. In 

fact, the maps’ predictions hold over the Monte Carlo analysis. In each case, though not all trajectories 

achieve heliocentric escape, 100% of the Monte Carlo trials depart the NRHO with energy sufficient to allow 

escape. For a 3.5 m/s burn at TA = 150° directed such that yaw = -25° and pitch = 35°, 396/560 trials escape 

to heliocentric space. For a 15 m/s separation burn in the yaw = -5°, pitch = 40° direction, 460/560 trajectories 

escape. Again, every departing trajectory is sufficiently energetic to escape, though escape does not always 

occur. The departing trajectories that fail to achieve heliocentric escape remain earthbound because of their 

unfavorable orientation in the Sun-B1 frame. It is also important to consider the safety of the Gateway 

spacecraft as objects depart. The risk of recontact with the Gateway is explored in depth in a previous study,4 

and a concurrent study explores the risk of recontact during the specific successful heliocentric escapes in 

the current Monte Carlo example.11 All four of the maneuvers investigated in this section depart the NRHO 

without a risk of recontact with the Gateway.    

In summary, for any revolution along the NRHO, maneuver locations, magnitudes, and directions can 

be identified that yield energy sufficient for escape from the Earth-Moon vicinity. Hamiltonian maps 

characterize the maneuver design space and allow selection of maneuver magnitudes and directions that yield 

sufficiently energetic departures from the NRHO. Separation locations away from perilune are associated 

with smaller navigation errors and, thus, are associated with more robust departure energies for small 

separation burns. In a Monte Carlo analysis, 100% robustness is observed for maneuver magnitudes as low 

as 3.5 m/s for maneuvers away from perilune, while 15 m/s is required for reliable departures from perilune. 

A 1 m/s burn does not provide 100% robust departure energy in the presence of navigation errors, even away 

from perilune, especially if a consistent maneuver location and direction is desired from one revolution to 

the next. In all cases, successful heliocentric escape also requires appropriate Sun-B1 orientation. 
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NRHO Departure geometry and 

Sun-B1 Hamiltonian 

The relationship between 

departure geometry from the 9:2 

NRHO and the Sun-𝐵1 Hamiltonian 

value is explored in the BCR4BP. For 

a fixed magnitude and direction 

maneuver at perilune along the 

NRHO, the initial position of the Sun 

is varied, and the state is propagated 

using the BCR4BP equations of 

motion. The resulting trajectories for 

a maneuver of 5 m/s in the velocity 

direction are plotted as viewed in the 

Earth-Moon rotating frame in Figure 

11. The trajectories are propagated for 

an arbitrary duration of 40 days, a sufficient time for all trajectories to reach a plateau in Sun-𝐵1 Hamiltonian 

value, plotted in Figure 11c. Multiple geometries are observed in Figure 11a. Trajectories plotted in shades 

of blue, corresponding to an initial Sun angle between -100° and -80°, depart the NRHO near apolune and 

possess a negative 𝑧-coordinate after departure. These types of geometries do not offer sufficient energy to 

escape the Earth-Moon system. As the initial Sun angle increases, the departing trajectories stretch toward 

the Moon, and the resulting Sun-B1 Hamiltonian values decrease. The trajectory possessing the lowest Sun-

B1 Hamiltonian after departure from the NRHO, that is, the most energetic trajectory, is plotted in black in 

Figures 11a to 11c. Its geometry is consistent with previously observed successful disposal trajectories: a 

sharp ‘turn’ after departure from the vicinity of the Moon. As the initial Sun angle further increases, for lines 

colored in shades of red in Figure 11, another loop begins to form around the Moon and the Sun-B1 

Hamiltonian values start to increase. This new loop indicates a transition in the solution geometry, from 2 

revolutions to 3 revolutions before departure. The departure metric, i.e., the momentum integral, is plotted in 

Figure 11b, and exhibits signs of the shift in geometry as well: trajectories with an extra loop with respect to 

the Moon also possess an additional crest in their associated momentum integral value. Departure geometry 

from the lunar vicinity and the evolution of the Sun-B1 Hamiltonian value are closely related; by appropriately 

selecting the NRHO departure geometry, favorable energy in the Sun-B1 frame is achieved. 

Orientation in the Sun-B1 System: Maneuver timing 
 

After a separation maneuver is selected that yields sufficient energy at NRHO departure, a second 

prerequisite must be met to ensure escape to heliocentric space. Once the spacecraft has departed the NRHO, 

solar gravity significantly affects the trajectory. The orientation of the orbit in the Sun-B1 frame determines 

whether the impact of solar gravity circularizes the orbit around the Earth-Moon barycenter, preventing 

escape, or elongates the orbit, facilitating escape to heliocentric space.13 A previous analysis3 details 

departures from the NRHO in quadrant I or quadrant III in the Sun-B1 rotating frame with the appropriate 

energy and eccentricity that lead to heliocentric escape, where the B1-centered quadrants are defined in red 

text in Figure 12a. The higher the energy at departure, the less precise the required orientation to allow escape 

through the E1 and E2 portals in the ZVSs. For example, consider the trajectories in Figure 12. In each image, 

the ZVS is defined by the Sun-B1 Hamiltonian value along the trajectory after departure from the NRHO, 

and the spacecraft cannot cross into the forbidden region, shaded in blue. In Figure 12a, the Hamiltonian 

value is sufficiently low and the trajectory is oriented appropriately for the 3.5 m/s separation burn to lead to 

escape. In contrast, in Figure 12b, while the ZVSs are open, the orientation is not favorable and the trajectory 

does not escape. Figure 12c represents a 5 m/s separation maneuver that results in insufficient energy; the 

ZVSs are closed at both E1 and E2. Figures 12d and 12e each represent a 15 m/s separation burn; though the 

Hamiltonian is lower in Figure 12e and the portal is open further, the orientation is unfavorable and the 

trajectory remains earthbound. To ignore orientation entirely, a separation burn as high as 200 m/s is required, 

as in Figure 12f. In this case, the ZVSs are entirely out of plane and any orientation likely leads to escape. 

Since a Δv of such a high magnitude is operationally infeasible, smaller burns must be executed such that the 

departing trajectory is elongated by the Sun’s gravity and pulled through the E1 or E2 portal.  

Figure 11. Departure geometries from the 9:2 NRHO in the 

BCR4BP for a 5 m/s maneuver (a). Associated momentum 

integral (b) and Sun-B1 Hamiltonian (b) 

                                               b. 

a.                                            c. 
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Figure 12.  Escaping and earthbound trajectories near the Moon and ZVSs defining forbidden 

regions in the BCR4BP. 
 

The orientation of the escaping path in the Sun-B1 rotating frame depends on (1) the time between the 

separation maneuver and the MI value indicating departure from the NRHO and (2) the orientation of the 

maneuver itself. Thus, for a given set of burn parameters, the location of the burn in the Sun-B1 frame is 

mapped to the outcome. Three candidate separation burns from Table 2 are again investigated. This time, the 

burn locations are plotted in Figure 13 in the Sun-B1 rotating frame, colored according to their fate. 

Maneuvers that lead to heliocentric escape are colored red, while burns that result in earthbound trajectories 

appear in blue. Recall that the Hamiltonian values at NRHO departure for each of the 560 trajectories 

represented in the maps in Figure 13 are sufficiently low to allow heliocentric escape; however, only the 

burns marked in red result in a trajectory oriented appropriately to allow solar gravity to facilitate escape 

from the Earth-Moon vicinity. Note that nine clusters of maneuvers appear in each plot; these nine burn 

locations repeat because of the 9:2 resonance of the NRHO with the lunar synodic period. In each case, five 

or six of the nine possible maneuver orientations result in consistent heliocentric escape over the one-year 

analysis. All of the earthbound trajectories originate from maneuvers in the remaining orientations, with the 

15 m/s burns resulting in fewer total earthbound outcomes. The specific maneuver locations that lead to 

successful escapes depend on the burn parameters. For example, in Figure 13a, burn locations along the x 

axis in the Sun-B1 rotating frame for a 3.5 m/s burn at TA = 150° result in successful escapes; the same is not 

true in Figure 13c: burns of 15 m/s from perilune near the Sun-B1 rotating x axis lead to earthbound orbits. 

The maneuver maps in Figure 13 show, over time, the correlation between burn location and departure 

orientation, and, thus, successful heliocentric escape. A map is specific to each set of burn parameters. 
 

 
Figure 13. Maneuver orientations in the Sun-B1 frame in the ephemeris model. 
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LUNAR IMPACT TRAJECTORIES 
 

For some Gateway applications, it may be desirable to impact the lunar surface after departure from the 

NRHO. Lunar impact trajectories are of interest to lunar science missions, ejecta studies, and potential 

disposal of objects not intended for heliocentric space.14 Understanding the behavior of lunar impact 

trajectories originating from the NRHO also characterizes risk and may drive constraint definition for mission 

designs in which lunar impact is not desired and aid in avoidance of lunar heritage sites. As with escaping 

trajectories, the qualitative and quantitative nature of lunar impact trajectories from the NRHO are highly 

dependent on the location, magnitude and direction of the departing maneuver. Lunar impact trajectory 

characteristics of interest include the location in pitch-yaw space of the separation maneuvers that lead to 

impact, the velocity, angle, and location of lunar impact on the surface, and the time to impact. Time to 

impact provides a quantifiable metric for impact geometry. Analysis of the lunar impact trajectories is 

performed in the CR3BP to eliminate epoch dependence and to leverage the Jacobi constant. The current 

analysis is limited to orbits that remain in the lunar vicinity.  
 

Theoretical Bounding of Impact Speed 
 

The speed relative to the lunar surface at impact is important for various applications, including kinetic 

impactors and ejecta analysis. The CR3BP supplies a theoretical bound on the extrema for impact speeds 

resulting from maneuvers in the 9:2 NRHO. The Jacobi constant in Equation (1) is a first order integral of 

the motion in the CR3BP and remains constant across any continuous ballistic trajectory. Assuming a given 

initial Jacobi constant value, Equations (1) and (2) are 

rearranged to yield the relative velocity magnitude at any point 

along the trajectory as a function of position and 𝐽, i.e.                                                    

𝑣 = √(𝑥2 + 𝑦2) +
2(1−𝜇)

𝑑
+

2𝜇

𝑟
− 𝐽.  (5) 

The impact condition bounds 𝑑, 𝑟, and (𝑥2 + 𝑦2).  The 

distance to the Earth at impact, 𝑑, is never greater than that of 

the lunar orbital radius plus the lunar radius; the distance to the 

Moon at impact, 𝑟, is always equal to the lunar radius, and the 

quantity (𝑥2 + 𝑦2) is bound by the square of the bounds on 𝑑. 

Thus, the minimum and maximum speeds at impact are 

evaluated for a given initial Jacobi constant value and a given 

maneuver magnitude at perilune in both the anti-velocity and 

velocity directions, respectively. Note that the derivation of the 

minimum and maximum impact velocities does not ensure that 

trajectories actually exist. The impact extrema as functions of separation maneuver magnitude appear in 

Figure 14. As maneuver magnitude increases, arbitrarily high impact speeds (red) are predicted. Conversely, 

a lower bound of approximately 1.6 km/s exists for the minimum impact speed (blue). Beyond this point, the 

minimum theoretical impact speed climbs with the same slope as the maximum. The slope of the increasing 

curves is nearly one, suggesting that a 1 km/s increase in separation maneuver magnitude corresponds to a 1 

km/s increase in minimum and maximum theoretical impact speeds. This relationship demonstrates that 

achieving high impact velocities demands high separation maneuver magnitudes. Impact speed extrema for 

four maneuver magnitudes appear in Table 3. At each maneuver magnitude, the difference between the 

minimum and maximum impact speeds is 20 to 30 m/s. This minor variation leaves little room for impulsive 

trajectory design strategies that increase – or decrease – the impact speed significantly without adding 

additional maneuvers beyond the initial departure. 
 

Table 3. Impact speed extrema for 1, 5, 10, and 15 m/s departures 

Maneuver 

Magnitude [m/s] 

Minimum 

Theoretical Impact 

Speed [km/s] 

Maximum 

Theoretical Impact 

Speed [km/s] 

Minimum 

Observed Impact 

Speed [km/s] 

Maximum 

Observed Impact 

Speed [km/s] 

1.0 2.350 2.360 2.354 3.356 

5.0 2.347 2.362 2.351 2.358 

10.0 2.344 2.366 2.348 2.362 

15.0 2.340 2.370 2.344 2.363 
 

Figure 14.  CR3BP minimal and 

maximal lunar impact speeds  
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Impact Maps   
 

To explore the observed impact velocities after NRHO departure, a set of impact maps appears in Figure 

15. Impact trajectories departing from the NRHO are parameterized by the magnitude, yaw, and pitch of the 

separation maneuver, the location of the burn along the NRHO, and the time to impact. Finding an impacting 

departure trajectory requires a search through this five-dimensional search-space. The search-space is 

reduced to four dimensions by capping integration time at 130 days and propagating departure trajectories 

forward until lunar impact or departure from the lunar region. Departure from the lunar region is defined as 

a trajectory that crosses 𝑥 = 𝑥𝐿1 or 𝑥 = 𝑥𝐿2, where 𝑥𝐿1 and 𝑥𝐿2 represent the 𝑥 components of the locations 

of the Earth-Moon 𝐿1 and 𝐿2 libration points.  

As the departing trajectories are propagated forward in time, each impact trajectory is recorded along 

with its impact velocity, angle, location, and time of flight. The maneuvers that lead to lunar impact are 

plotted on the impact maps in Figure 15 colored according to the impact speed of the corresponding trajectory 

for maneuver magnitudes of 1, 5, and 15 m/s. Note the similarity to the yellow regions in Figure 9, indicating 

the consistency in results between the CR3BP and the ephemeris model. Two main structures are observed 

in the impact maps: rings and lobes. At lower maneuver magnitudes, rings are the dominant structures and 

primarily exist surrounding the anti-velocity direction at perilune; they shift as the departure location moves 

around the orbit. Rings represent localized maneuver directions that lead to lunar impact, and they are 

observed in each of the maps in Figure 15. A single ring possesses similar impact velocity characteristics 

throughout. At higher maneuver magnitudes, another group of rings forms around the velocity direction, 

characterized by higher impact velocities, again consistent across each ring. The second type of structure is 

observed as lobe-like patterns centered on the anti-velocity direction. At perilune, as in Figures 15b and 15c, 

these lobes appear as sets of concentric ring structures, but as the departure location is shifted, they deform 

and lose symmetry, as observed in Figure 15f. Impact velocity varies continuously across each lobe. A key 

feature of the lobe structures is that a small change in maneuver direction still results in an impacting 

trajectory; impact departure directions located on the isolated ring structures do not share this robustness. It 

is observed that maneuvers with a larger component in the anti-velocity direction result in lower impact 

speeds. Intuitively, as anti-velocity burns reduce the energy of a spacecraft, speed decreases at any particular 

position. Impact velocities are observed within the range bounded by the theoretical minimum observed 

impact speeds, as summarized in Table 3.  
 

 
Figure 15.  Impact speeds for separation maneuvers of 1, 5, and 15 m/s at various true anomalies on 

the ascending half of the 9:2 NRHO 

In Figure 16, a series of maps is stacked with the TA of the separation burn along the vertical axis. These 

3D maps are colored according to lunar impact angle for burn magnitudes of 5 and 15 m/s. Impact angle is 

defined as the velocity vector angle at impact with respect to the local surface normal. Thus, an angle of 0∘ 
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represents an impact normal to the surface while impact angles near 90∘ are tangent to the lunar surface at 

impact. Immediately apparent are rings or shells surrounding the velocity direction, solid lobes around the 

anti-velocity direction, and other structures and chaotic points throughout the maps. Consistent impact angles 

are absent in the ring or shell structures for any given TA across all true anomalies and maneuver magnitudes; 

large variation in angle exists within each single ring. Within the larger lobe structures, however, a relatively 

smooth gradient across impact angle is observed. Discontinuous jumps are apparent within the lobes in Figure 

16b, marked by a white arrow. The cause of these discontinuities is apparent in Figure 17; Figure 17a is a 

map corresponding to separation at perilune. Near the anti-velocity direction, all of the transfers in the lobe 

are 2-revolution transfers. As the maneuver direction shifts away from the anti-velocity direction, the latitude 

of impact rises, and the impact angle decreases. Beyond a critical value, the trajectory does not impact the 

surface; rather, two more revolutions are added before impacting at a lower impact angle. An impacting 

trajectory prior to this discontinuity appears in Figure 17b while an impacting trajectory immediately 

following the discontinuity appears in Figure 17c. Note that the 4-revolution transfers proceed through the 

range of impact angles much more quickly than the 2-revolution transfers because of the increased sensitivity 

in the final states resulting from the increase in transfer time. The impact angles outside of the lobe structures 

are quite unpredictable and, as the departure location shifts toward apolune, this unpredictability grows. Such 

chaotic behavior is in contrast to the relatively predictable behavior generally observed in the impact velocity. 

Figures 15 and 16 demonstrate that the magnitude of spacecraft velocity at impact is easier to predict than 

the direction of spacecraft velocity. The chaotic nature of the region disperses trajectories in geometry, but 

because impact velocity is largely a function of energy in a conservative system, it remains predictable despite 

large variations in geometry. 
 

 
Figure 16.  Impact angles for separation maneuvers of 1, 5, and 15 m/s at three true anomalies on the 

ascending half of the 9:2 NRHO 

 

Figure 17.  A 2-revolution (b) and 4-revolution (c) impact trajectory occurring inside and outside the 

discontinuity in the anti-velocity lobe in Figure 17(a). 

The time to impact along trajectories offers an indication of transfer geometry without visual inspection 

of individual trajectories; for a given application, the time to impact may also rule out certain transfer 

geometries due to spacecraft capabilities. In Figure 18, a series of maps is again stacked with the TA of the 
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separation burn represented along the vertical axis. In this map, however, the points are colored according to 

time to impact for burn magnitudes of 5 and 15 m/s. As maneuver magnitude is increased, the time to impact 

tends to decrease. In both cases, the minimum time to impact is observed close to the anti-velocity direction. 

As with the impact speeds, the time to impact remains relatively constant throughout a ring (or shell) 

structure. However, in contrast to impact speed, time to impact is consistent throughout the lobes as well. A 

discontinuity appears in the lobe in Figure 18b, marked by a white arrow; this discontinuity corresponds to 

the observed jump from 2-revolution to 4-revolution impact trajectories. Figure 19 demonstrates the use of 

time to impact as a quantifiable measure of geometry. A single slice of the 3D map in Figure 18b appears in 

Figure 19a for a separation TA = 180°. Impact trajectories completing 2, 3, 4, and 5 revolutions are identified 

from variations in the time to impact; each trajectory corresponds to a separation burn marked on the map in 

Figure 19a. 
 

 
Figure 18.  Times to impact for separation maneuvers of 5 and 15 m/s  

 
Figure 19.  Differing multi-revolution transfers identifed from variations in time to impact 

Maps are also used to identify maneuvers that lead to specific impact locations on the lunar surface. 

Defining latitude and longitude with respect to the rotating frame in the CR3BP and assuming that the Moon 

is exactly fixed in its tidal lock, the latitude and longitude of the impact locations are computed. Figure 20 

depicts impact locations for various magnitudes and departure locations. Interestingly, the 1 m/s and 15 m/s 

cases show more overall structure than the 5 m/s case. The 1 m/s trajectories demonstrate that, at all depicted 

departure locations, transfers exist to the lunar south pole region. The 15 m/s case yields a lack of impact 

trajectories near the south pole with a majority of impacts occurring in the northern hemisphere. The streaks 

in impact location resulting from 15 m/s separation burns in Figures 20c and 20f correspond to the multi-

revolution transfers depicted in Figures 17 and 19, respectively. The anti-velocity lobes, therefore, cluster 

not only in yaw-pitch space but also in lunar impact position. This clustering provides a level of robustness 

on both sides of the impact transfer. In general, at higher maneuver magnitudes, the percentage of impact 

trajectories in the southern hemisphere drops. In all cases, however, the impact locations outside the streaks 

are either part of a ring structure or are one-off impact departures in yaw-pitch space, vastly reducing their 

robustness.  Impact locations on the lunar surface are explored in further depth in a concurrent study.14 
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Figure 20.  Impact locations on lunar surface for separation maneuvers of 1, 5, and 15 m/s at various 

true anomalies on the ascending half of the NRHO 

Commonly Observed Geometries 
 

Three dominant geometries arise in the impact trajectories explored in the current analysis. These 

geometries are summarized in Figure 21. Figure 21a represents a map relating separation burn direction to 

time to impact for a 15 m/s Δv applied at apolune. Figure 21b depicts a multi-revolution transfer resulting 

from a burn near the anti-velocity direction; this type of geometry is responsible for the streaks observed in 

Figures 20c and 20f. This multi-revolution geometry is present at and above maneuver magnitudes of 5 m/s, 

and offers the most robust transfers in terms of the sensitivity of final impact location to error in the initial 

departure location and maneuver direction. An example of motion present in the ring structures surrounding 

velocity-direction maneuvers appears in Figure 21c. This type of geometry strongly resembles Period-4 Halo 

Orbits investigated by Zimovan-Spreen and Howell15 and may be related to the manifold structures 

originating from the unstable members of the family. The geometry present in Figure 21d is similar to that 

of the unstable manifold structures in the Butterfly orbit family.2 These types of impact trajectories originate 

from maneuvers outside of the lobes surrounding the anti-velocity direction. The separation burns leading to 

the impact trajectories in Figure 21b-d are marked by black points on the map in Figure 21a. The geometry 

of trajectories departing the NRHO and impacting the lunar surface appear to be closely related to the 

geometry of nearby periodic orbit family manifolds. Further investigation into the relationship of these 

structures may inform future impact trajectory design methodologies. 
 

 
Figure 21. Commonly observed impact trajectory geometries 
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CONCLUDING REMARKS 
 

Objects departing the Gateway may be destined for heliocentric space or the lunar surface. Reliable 

delivery to the desired destination is imperative for safe spacecraft operations. The multibody dynamical 

environment in cislunar space complicates trajectory design while providing opportunities for low-cost orbit 

transfers. The natural flow of objects in this regime is explored; although not well defined near perilune, the 

unstable manifold directions near apolune in the Earth-Moon CR3BP accurately describe departing behavior 

of trajectories originating in NRHOs.  

Departures to heliocentric space require sufficient energy at NRHO departure as well as a favorable 

orientation in the Sun-B1 frame. The energy at departure is not directly predicted by the magnitude of the 

separation burn, as the Sun-B1 Hamiltonian is affected by the pattern of the departure flow, which in turn 

depends on the location, magnitude, and direction of the separation burn. Hamiltonian maps are generated 

that yield at a glance maneuver parameters that lead to sufficiently energetic trajectories. Then, the escape 

success is related to the maneuver orientation in the Sun-B1 frame to recommend separation burns of 3.5 m/s 

and 15 m/s away from perilune that lead to reliable heliocentric escape in the presence of navigation and 

maneuver execution errors. Finally, lunar impact trajectories are explored, including the correlation of 

separation burn magnitude, direction, and location with lunar impact speed, angle, and location.  The time of 

flight is an indicator of trajectory geometry. 
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